基于小脚丫FPGA_利用ADC制作一个数字电压表
本项目使用小脚丫的FPGA平台,将模拟电压转换成数字电压,并在oled上进行显示,同时,可通过电位器实现电压0-3.3V可调
标签
FPGA
测试
数字逻辑
显示
wangweiwei
更新2021-09-07
1510

项目要求

1.旋转电位计可以产生0-3.3V的电压

2.利用板上的串行ADC对电压进行转换

3.将电压值在板上的OLED屏幕上显示出来

项目设计思路

由于选择的是项目1(利用ADC设计数字电压表),其设计思路比较简单,这里我就贴一张图片。

Fitw8qHJ3g7uB23K36_ZGpvl5VEt

核心代码介绍

顶层设计

以下是顶层设计的代码(对关键部分进行了注释),

module adc_top(
input      			sys_clk  ,
input 				sys_rst_n,
input				adc_dat  ,	    //SPI总线SDA

output				adc_cs   ,		//SPI总线CS
output				adc_clk  ,	    //SPI总线SCK

output 				oled_csn ,          //OLCD液晶屏使能信号		
output   			oled_rst ,          //OLCD液晶屏复位信号
output 				oled_dcn ,          //OLCD数据指令控制信号
output 				oled_clk ,          //OLCD时钟信号
output 				oled_dat            //OLCD数据信号
);

wire      clk_adc;
wire [7:0]adc_data;
wire      adc_done;

//例化lcd及adc采集模块,因为ad采集芯片时钟在20mhz以上有更好的效果,所以例化了pll ip核进行倍频

clk_div u_clk_div (
	.CLKI (sys_clk), 
	.CLKOP(clk_adc)
);

adc u_adc(
.clk	    (clk_adc  ),//采用倍频后的时钟		
.rst_n	       (sys_rst_n),  	
.adc_cs	(adc_cs   ),	//adc的片选信号	
.adc_clk	(adc_clk  ),	//adc时钟信号
.adc_dat	(adc_dat  ),	//通过spi采集到的位数据
.adc_done	(adc_done ),	
.adc_data	(adc_data )	//adc的采集数据级连到lcd中进行数据处理
);

oled u_cld
(
	.clk  		(sys_clk  ),		//12MHz系统时钟
	.rst_n		(sys_rst_n),		//系统复位,低有效
 
	.adc_data	(adc_data),
	.oled_csn	(oled_csn),	//OLCD液晶屏使能
	.oled_rst	(oled_rst),	//OLCD液晶屏复位
	.oled_dcn	(oled_dcn),	//OLCD数据指令控制
	.oled_clk	(oled_clk),	//OLCD时钟信号
	.oled_dat	(oled_dat)//OLCD数据信号
);

endmodule 

ADC模块

将模拟电压转换为数字电压,这部分代码是直接参考的电子森林项目里的源代码

module adc
(
input				clk,		//系统时钟
input				rst_n,  	//系统复位,低有效
output	reg			adc_cs,		//SPI总线CS
output	reg			adc_clk,	//SPI总线SCK
input				adc_dat,	//SPI总线SDA
output	reg			adc_done,	//ADC采样完成标志
output	reg [7:0]	adc_data	//ADC采样数据
);
parameter HIGH = 1'b1;
parameter LOW  = 1'b0;

reg [7:0] cnt; //计数器
always @(posedge clk or negedge rst_n)
	if(!rst_n) cnt <= 1'b0;
	else if(cnt >= 8'd34) cnt <= 1'b0;
	else cnt <= cnt + 1'b1;
 
reg [7:0] data;
always @(posedge clk or negedge rst_n)begin
	if(!rst_n) begin
		adc_cs <= HIGH; adc_clk <= HIGH;
	end 
	else begin 
		case(cnt)
		8'd0 :  begin adc_cs <= HIGH; adc_clk <= HIGH; end
		8'd1 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end
		8'd2,8'd4,8'd6,8'd8,8'd10,8'd12,8'd14,8'd16,
		8'd18,8'd20,8'd22,8'd24,8'd26,8'd28,8'd30,8'd32:	
				 begin adc_cs <= LOW;  adc_clk <= LOW;  end
		8'd 3 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end //0
		8'd 5 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end //1
		8'd 7 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end //2
		8'd 9 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[7] <= adc_dat; end //3
		8'd11 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[6] <= adc_dat; end //4
		8'd13 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[5] <= adc_dat; end //5
		8'd15 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[4] <= adc_dat; end //6
		8'd17 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[3] <= adc_dat; end //7
		8'd19 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[2] <= adc_dat; end //8
		8'd21 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[1] <= adc_dat; end //9
		8'd23 :  begin adc_cs <= LOW;  adc_clk <= HIGH; data[0] <= adc_dat; end //10
		8'd25 :  begin adc_cs <= LOW;  adc_clk <= HIGH; adc_data <= data; end //11
		8'd27 :  begin adc_cs <= LOW;  adc_clk <= HIGH; adc_done <= HIGH; end //12
		8'd29 :  begin adc_cs <= LOW;  adc_clk <= HIGH; adc_done <= LOW; end //13
		8'd31 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end //14
		8'd33 :  begin adc_cs <= LOW;  adc_clk <= HIGH; end //15
		8'd34 :  begin adc_cs <= HIGH;  adc_clk <= HIGH; end
		default : begin adc_cs <= HIGH;  adc_clk <= HIGH;  end
	endcase
	end
end

endmodule 

OLED模块

要将模拟电压转换后的数值显示在oled屏上,就需要有关于oled模块的定义,这一部分代码也是参考资料中的oled12832代码部分,其中增加了数据处理部分并修改了显示部分,其作用是将adc采集到的数字量转换成实际电压,并显示在oled上。

module oled
(
	input				clk,		//12MHz系统时钟
	input				rst_n,		//系统复位,低有效
 
	input 		[7:0]   adc_data,
	output	reg			oled_csn,	//OLCD液晶屏使能
	output	reg			oled_rst,	//OLCD液晶屏复位
	output	reg			oled_dcn,	//OLCD数据指令控制
	output	reg			oled_clk,	//OLCD时钟信号
	output	reg			oled_dat	//OLCD数据信号
);
 
	localparam INIT_DEPTH = 16'd25; //OLED初始化的命令的数量
	localparam IDLE = 6'h1, MAIN = 6'h2, INIT = 6'h4, SCAN = 6'h8, WRITE = 6'h10, DELAY = 6'h20;
	localparam HIGH	= 1'b1, LOW = 1'b0;
	localparam DATA	= 1'b1, CMD = 1'b0;
 
	reg [7:0] cmd [24:0];
	reg [39:0] mem [122:0];
	reg	[7:0]	y_p, x_ph, x_pl;
	reg	[(8*21-1):0] char;
	reg	[7:0]	num, char_reg;				//
	reg	[4:0]	cnt_main, cnt_init, cnt_scan, cnt_write;
	reg	[15:0]	num_delay, cnt_delay, cnt;
	reg	[5:0] 	state, state_back;
	wire[7:0]   data0,data1,data2,data3,data4,data5,data6,data7;
	
 	//将adc_data 做数据处理
	assign data0=8'd48 + adc_data%10; //最低位
	assign data1=8'd48 + adc_data/10%10;
	assign data2=8'd48 + adc_data/100;
	因为lcd为ascll显示所以要对十进制加48处理
	assign data3=8'd48 + (adc_data*129)%10;     
	assign data4=8'd48 + (adc_data*129)/10%10;
	assign data5=8'd48 + (adc_data*129)/100%10;
	assign data6=8'd48 + (adc_data*129)/1000%10;
	assign data7=8'd48 + (adc_data*129)/10000;
	
	always@(posedge clk or negedge rst_n) begin
		if(!rst_n) begin
			cnt_main <= 1'b0; cnt_init <= 1'b0; cnt_scan <= 1'b0; cnt_write <= 1'b0;
			y_p <= 1'b0; x_ph <= 1'b0; x_pl <= 1'b0;
			num <= 1'b0; char <= 1'b0; char_reg <= 1'b0;
			num_delay <= 16'd5; cnt_delay <= 1'b0; cnt <= 1'b0;
			oled_csn <= HIGH; oled_rst <= HIGH; oled_dcn <= CMD; oled_clk <= HIGH; oled_dat <= LOW;
			state <= IDLE; state_back <= IDLE;
		end else begin
			case(state)
				IDLE:begin
						cnt_main <= 1'b0; cnt_init <= 1'b0; cnt_scan <= 1'b0; cnt_write <= 1'b0;
						y_p <= 1'b0; x_ph <= 1'b0; x_pl <= 1'b0;
						num <= 1'b0; char <= 1'b0; char_reg <= 1'b0;
						num_delay <= 16'd5; cnt_delay <= 1'b0; cnt <= 1'b0;
						oled_csn <= HIGH; oled_rst <= HIGH; oled_dcn <= CMD; oled_clk <= HIGH; oled_dat <= LOW;
						state <= MAIN; state_back <= MAIN;
					end
				MAIN:begin
						if(cnt_main >= 5'd14) cnt_main <= 5'd5;
						else cnt_main <= cnt_main + 1'b1;
						case(cnt_main)	//MAIN状态
							5'd0:	begin state <= INIT; end
							5'd1:	begin y_p <= 8'hb0; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd16; char <= "project 1       ";state <= SCAN; end
							5'd2:	begin y_p <= 8'hb1; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd16; char <= "ADC             ";state <= SCAN; end
							5'd3:	begin y_p <= 8'hb2; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd16; char <= "REA V:          ";state <= SCAN; end
							5'd4:	begin y_p <= 8'hb3; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd16; char <= "ADC V:          ";state <= SCAN; end
 


							5'd5:	begin y_p <= 8'hb2; x_ph <= 8'h13; x_pl <= 8'h00; num <= 5'd 1; char <= data2;           state <= SCAN; end
							5'd6:	begin y_p <= 8'hb2; x_ph <= 8'h13; x_pl <= 8'h08; num <= 5'd 1; char <= data1;           state <= SCAN; end
							5'd7:	begin y_p <= 8'hb2; x_ph <= 8'h14; x_pl <= 8'h00; num <= 5'd 1; char <= data0;           state <= SCAN; end
								
							5'd8:	begin y_p <= 8'hb3; x_ph <= 8'h13; x_pl <= 8'h00; num <= 5'd 1; char <= data7;           state <= SCAN; end
							5'd9:	begin y_p <= 8'hb3; x_ph <= 8'h13; x_pl <= 8'h08; num <= 5'd 1; char <= ".";             state <= SCAN; end
							5'd10:	begin y_p <= 8'hb3; x_ph <= 8'h14; x_pl <= 8'h00; num <= 5'd 1; char <= data6;           state <= SCAN; end
							5'd11:	begin y_p <= 8'hb3; x_ph <= 8'h14; x_pl <= 8'h08; num <= 5'd 1; char <= data5;           state <= SCAN; end
							5'd12:	begin y_p <= 8'hb3; x_ph <= 8'h15; x_pl <= 8'h00; num <= 5'd 1; char <= data4;           state <= SCAN; end
							5'd13:	begin y_p <= 8'hb3; x_ph <= 8'h15; x_pl <= 8'h08; num <= 5'd 1; char <= data3;           state <= SCAN; end
							5'd14:	begin y_p <= 8'hb3; x_ph <= 8'h16; x_pl <= 8'h00; num <= 5'd 1; char <= "v";             state <= SCAN; end
							default: state <= IDLE;
						endcase
					end
				INIT:begin	//初始化状态
						case(cnt_init)
							5'd0:	begin oled_rst <= LOW; cnt_init <= cnt_init + 1'b1; end	//复位有效
							5'd1:	begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end	//延时大于3us
							5'd2:	begin oled_rst <= HIGH; cnt_init <= cnt_init + 1'b1; end	//复位恢复
							5'd3:	begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end	//延时大于220us
							5'd4:	begin 
										if(cnt>=INIT_DEPTH) begin	//当25条指令及数据发出后,配置完成
											cnt <= 1'b0;
											cnt_init <= cnt_init + 1'b1;
										end else begin	
											cnt <= cnt + 1'b1; num_delay <= 16'd5;
											oled_dcn <= CMD; char_reg <= cmd[cnt]; state <= WRITE; state_back <= INIT;
										end
									end
							5'd5:	begin cnt_init <= 1'b0; state <= MAIN; end	//初始化完成,返回MAIN状态
							default: state <= IDLE;
						endcase
					end
				SCAN:begin	//刷屏状态,从RAM中读取数据刷屏
						if(cnt_scan == 5'd11) begin
							if(num) cnt_scan <= 5'd3;
							else cnt_scan <= cnt_scan + 1'b1;
						end else if(cnt_scan == 5'd12) cnt_scan <= 1'b0;
						else cnt_scan <= cnt_scan + 1'b1;
						case(cnt_scan)
							5'd 0:	begin oled_dcn <= CMD; char_reg <= y_p; state <= WRITE; state_back <= SCAN; end		//定位列页地址
							5'd 1:	begin oled_dcn <= CMD; char_reg <= x_pl; state <= WRITE; state_back <= SCAN; end	//定位行地址低位
							5'd 2:	begin oled_dcn <= CMD; char_reg <= x_ph; state <= WRITE; state_back <= SCAN; end	//定位行地址高位
 
							5'd 3:	begin num <= num - 1'b1;end
							5'd 4:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
							5'd 5:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
							5'd 6:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
							5'd 7:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][39:32]; state <= WRITE; state_back <= SCAN; end
							5'd 8:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][31:24]; state <= WRITE; state_back <= SCAN; end
							5'd 9:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][23:16]; state <= WRITE; state_back <= SCAN; end
							5'd10:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][15: 8]; state <= WRITE; state_back <= SCAN; end
							5'd11:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][ 7: 0]; state <= WRITE; state_back <= SCAN; end
							5'd12:	begin state <= MAIN; end
							default: state <= IDLE;
						endcase
					end
				WRITE:begin	//WRITE状态,将数据按照SPI时序发送给屏幕
						if(cnt_write >= 5'd17) cnt_write <= 1'b0;
						else cnt_write <= cnt_write + 1'b1;
						case(cnt_write)
							5'd 0:	begin oled_csn <= LOW; end	//9位数据最高位为命令数据控制位
							5'd 1:	begin oled_clk <= LOW; oled_dat <= char_reg[7]; end	//先发高位数据
							5'd 2:	begin oled_clk <= HIGH; end
							5'd 3:	begin oled_clk <= LOW; oled_dat <= char_reg[6]; end
							5'd 4:	begin oled_clk <= HIGH; end
							5'd 5:	begin oled_clk <= LOW; oled_dat <= char_reg[5]; end
							5'd 6:	begin oled_clk <= HIGH; end
							5'd 7:	begin oled_clk <= LOW; oled_dat <= char_reg[4]; end
							5'd 8:	begin oled_clk <= HIGH; end
							5'd 9:	begin oled_clk <= LOW; oled_dat <= char_reg[3]; end
							5'd10:	begin oled_clk <= HIGH; end
							5'd11:	begin oled_clk <= LOW; oled_dat <= char_reg[2]; end
							5'd12:	begin oled_clk <= HIGH; end
							5'd13:	begin oled_clk <= LOW; oled_dat <= char_reg[1]; end
							5'd14:	begin oled_clk <= HIGH; end
							5'd15:	begin oled_clk <= LOW; oled_dat <= char_reg[0]; end	//后发低位数据
							5'd16:	begin oled_clk <= HIGH; end
							5'd17:	begin oled_csn <= HIGH; state <= DELAY; end	//
							default: state <= IDLE;
						endcase
					end
				DELAY:begin	//延时状态
						if(cnt_delay >= num_delay) begin
							cnt_delay <= 16'd0; state <= state_back; 
						end else cnt_delay <= cnt_delay + 1'b1;
					end
				default:state <= IDLE;
			endcase
		end
	end
 
	//OLED配置指令数据
	always@(posedge rst_n)
		begin
			cmd[ 0] = {8'hae}; 
			cmd[ 1] = {8'h00}; 
			cmd[ 2] = {8'h10}; 
			cmd[ 3] = {8'h00}; 
			cmd[ 4] = {8'hb0}; 
			cmd[ 5] = {8'h81}; 
			cmd[ 6] = {8'hff}; 
			cmd[ 7] = {8'ha1}; 
			cmd[ 8] = {8'ha6}; 
			cmd[ 9] = {8'ha8}; 
			cmd[10] = {8'h1f}; 
			cmd[11] = {8'hc8};
			cmd[12] = {8'hd3};
			cmd[13] = {8'h00};
			cmd[14] = {8'hd5};
			cmd[15] = {8'h80};
			cmd[16] = {8'hd9};
			cmd[17] = {8'h1f};
			cmd[18] = {8'hda};
			cmd[19] = {8'h00};
			cmd[20] = {8'hdb};
			cmd[21] = {8'h40};
			cmd[22] = {8'h8d};
			cmd[23] = {8'h14};
			cmd[24] = {8'haf};
		end 
 
	//5*8点阵字库数据
	always@(posedge rst_n)
		begin
			mem[  0] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E};   // 48  0
			mem[  1] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00};   // 49  1
			mem[  2] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46};   // 50  2
			mem[  3] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31};   // 51  3
			mem[  4] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10};   // 52  4
			mem[  5] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39};   // 53  5
			mem[  6] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30};   // 54  6
			mem[  7] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03};   // 55  7
			mem[  8] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36};   // 56  8
			mem[  9] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E};   // 57  9
			mem[ 10] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C};   // 65  A
			mem[ 11] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36};   // 66  B
			mem[ 12] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22};   // 67  C
			mem[ 13] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C};   // 68  D
			mem[ 14] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41};   // 69  E
			mem[ 15] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01};   // 70  F
 
			mem[ 32] = {8'h00, 8'h00, 8'h00, 8'h00, 8'h00};   // 32  sp 
			mem[ 33] = {8'h00, 8'h00, 8'h2f, 8'h00, 8'h00};   // 33  !  
			mem[ 34] = {8'h00, 8'h07, 8'h00, 8'h07, 8'h00};   // 34  
			mem[ 35] = {8'h14, 8'h7f, 8'h14, 8'h7f, 8'h14};   // 35  #
			mem[ 36] = {8'h24, 8'h2a, 8'h7f, 8'h2a, 8'h12};   // 36  $
			mem[ 37] = {8'h62, 8'h64, 8'h08, 8'h13, 8'h23};   // 37  %
			mem[ 38] = {8'h36, 8'h49, 8'h55, 8'h22, 8'h50};   // 38  &
			mem[ 39] = {8'h00, 8'h05, 8'h03, 8'h00, 8'h00};   // 39  '
			mem[ 40] = {8'h00, 8'h1c, 8'h22, 8'h41, 8'h00};   // 40  (
			mem[ 41] = {8'h00, 8'h41, 8'h22, 8'h1c, 8'h00};   // 41  )
			mem[ 42] = {8'h14, 8'h08, 8'h3E, 8'h08, 8'h14};   // 42  *
			mem[ 43] = {8'h08, 8'h08, 8'h3E, 8'h08, 8'h08};   // 43  +
			mem[ 44] = {8'h00, 8'h00, 8'hA0, 8'h60, 8'h00};   // 44  ,
			mem[ 45] = {8'h08, 8'h08, 8'h08, 8'h08, 8'h08};   // 45  -
			mem[ 46] = {8'h00, 8'h60, 8'h60, 8'h00, 8'h00};   // 46  .
			mem[ 47] = {8'h20, 8'h10, 8'h08, 8'h04, 8'h02};   // 47  /
			mem[ 48] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E};   // 48  0
			mem[ 49] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00};   // 49  1
			mem[ 50] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46};   // 50  2
			mem[ 51] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31};   // 51  3
			mem[ 52] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10};   // 52  4
			mem[ 53] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39};   // 53  5
			mem[ 54] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30};   // 54  6
			mem[ 55] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03};   // 55  7
			mem[ 56] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36};   // 56  8
			mem[ 57] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E};   // 57  9
			mem[ 58] = {8'h00, 8'h36, 8'h36, 8'h00, 8'h00};   // 58  :
			mem[ 59] = {8'h00, 8'h56, 8'h36, 8'h00, 8'h00};   // 59  ;
			mem[ 60] = {8'h08, 8'h14, 8'h22, 8'h41, 8'h00};   // 60  <
			mem[ 61] = {8'h14, 8'h14, 8'h14, 8'h14, 8'h14};   // 61  =
			mem[ 62] = {8'h00, 8'h41, 8'h22, 8'h14, 8'h08};   // 62  >
			mem[ 63] = {8'h02, 8'h01, 8'h51, 8'h09, 8'h06};   // 63  ?
			mem[ 64] = {8'h32, 8'h49, 8'h59, 8'h51, 8'h3E};   // 64  @
			mem[ 65] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C};   // 65  A
			mem[ 66] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36};   // 66  B
			mem[ 67] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22};   // 67  C
			mem[ 68] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C};   // 68  D
			mem[ 69] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41};   // 69  E
			mem[ 70] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01};   // 70  F
			mem[ 71] = {8'h3E, 8'h41, 8'h49, 8'h49, 8'h7A};   // 71  G
			mem[ 72] = {8'h7F, 8'h08, 8'h08, 8'h08, 8'h7F};   // 72  H
			mem[ 73] = {8'h00, 8'h41, 8'h7F, 8'h41, 8'h00};   // 73  I
			mem[ 74] = {8'h20, 8'h40, 8'h41, 8'h3F, 8'h01};   // 74  J
			mem[ 75] = {8'h7F, 8'h08, 8'h14, 8'h22, 8'h41};   // 75  K
			mem[ 76] = {8'h7F, 8'h40, 8'h40, 8'h40, 8'h40};   // 76  L
			mem[ 77] = {8'h7F, 8'h02, 8'h0C, 8'h02, 8'h7F};   // 77  M
			mem[ 78] = {8'h7F, 8'h04, 8'h08, 8'h10, 8'h7F};   // 78  N
			mem[ 79] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h3E};   // 79  O
			mem[ 80] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h06};   // 80  P
			mem[ 81] = {8'h3E, 8'h41, 8'h51, 8'h21, 8'h5E};   // 81  Q
			mem[ 82] = {8'h7F, 8'h09, 8'h19, 8'h29, 8'h46};   // 82  R
			mem[ 83] = {8'h46, 8'h49, 8'h49, 8'h49, 8'h31};   // 83  S
			mem[ 84] = {8'h01, 8'h01, 8'h7F, 8'h01, 8'h01};   // 84  T
			mem[ 85] = {8'h3F, 8'h40, 8'h40, 8'h40, 8'h3F};   // 85  U
			mem[ 86] = {8'h1F, 8'h20, 8'h40, 8'h20, 8'h1F};   // 86  V
			mem[ 87] = {8'h3F, 8'h40, 8'h38, 8'h40, 8'h3F};   // 87  W
			mem[ 88] = {8'h63, 8'h14, 8'h08, 8'h14, 8'h63};   // 88  X
			mem[ 89] = {8'h07, 8'h08, 8'h70, 8'h08, 8'h07};   // 89  Y
			mem[ 90] = {8'h61, 8'h51, 8'h49, 8'h45, 8'h43};   // 90  Z
			mem[ 91] = {8'h00, 8'h7F, 8'h41, 8'h41, 8'h00};   // 91  [
			mem[ 92] = {8'h55, 8'h2A, 8'h55, 8'h2A, 8'h55};   // 92  .
			mem[ 93] = {8'h00, 8'h41, 8'h41, 8'h7F, 8'h00};   // 93  ]
			mem[ 94] = {8'h04, 8'h02, 8'h01, 8'h02, 8'h04};   // 94  ^
			mem[ 95] = {8'h40, 8'h40, 8'h40, 8'h40, 8'h40};   // 95  _
			mem[ 96] = {8'h00, 8'h01, 8'h02, 8'h04, 8'h00};   // 96  '
			mem[ 97] = {8'h20, 8'h54, 8'h54, 8'h54, 8'h78};   // 97  a
			mem[ 98] = {8'h7F, 8'h48, 8'h44, 8'h44, 8'h38};   // 98  b
			mem[ 99] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h20};   // 99  c
			mem[100] = {8'h38, 8'h44, 8'h44, 8'h48, 8'h7F};   // 100 d
			mem[101] = {8'h38, 8'h54, 8'h54, 8'h54, 8'h18};   // 101 e
			mem[102] = {8'h08, 8'h7E, 8'h09, 8'h01, 8'h02};   // 102 f
			mem[103] = {8'h18, 8'hA4, 8'hA4, 8'hA4, 8'h7C};   // 103 g
			mem[104] = {8'h7F, 8'h08, 8'h04, 8'h04, 8'h78};   // 104 h
			mem[105] = {8'h00, 8'h44, 8'h7D, 8'h40, 8'h00};   // 105 i
			mem[106] = {8'h40, 8'h80, 8'h84, 8'h7D, 8'h00};   // 106 j
			mem[107] = {8'h7F, 8'h10, 8'h28, 8'h44, 8'h00};   // 107 k
			mem[108] = {8'h00, 8'h41, 8'h7F, 8'h40, 8'h00};   // 108 l
			mem[109] = {8'h7C, 8'h04, 8'h18, 8'h04, 8'h78};   // 109 m
			mem[110] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h78};   // 110 n
			mem[111] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h38};   // 111 o
			mem[112] = {8'hFC, 8'h24, 8'h24, 8'h24, 8'h18};   // 112 p
			mem[113] = {8'h18, 8'h24, 8'h24, 8'h18, 8'hFC};   // 113 q
			mem[114] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h08};   // 114 r
			mem[115] = {8'h48, 8'h54, 8'h54, 8'h54, 8'h20};   // 115 s
			mem[116] = {8'h04, 8'h3F, 8'h44, 8'h40, 8'h20};   // 116 t
			mem[117] = {8'h3C, 8'h40, 8'h40, 8'h20, 8'h7C};   // 117 u
			mem[118] = {8'h1C, 8'h20, 8'h40, 8'h20, 8'h1C};   // 118 v
			mem[119] = {8'h3C, 8'h40, 8'h30, 8'h40, 8'h3C};   // 119 w
			mem[120] = {8'h44, 8'h28, 8'h10, 8'h28, 8'h44};   // 120 x
			mem[121] = {8'h1C, 8'hA0, 8'hA0, 8'hA0, 8'h7C};   // 121 y
			mem[122] = {8'h44, 8'h64, 8'h54, 8'h4C, 8'h44};   // 122 z
		end
 
endmodule

结果展示

Fh3lQCQVfGdlueeaKBjnMCZyW0G8Fv_Ng6frRGu-MkzREFSyoYd_q8TJ

项目开发过程遇到的问题

由于本人是第一次接触FPGA,所以对我来说,这是一个完全陌生的领域,在开发这个项目的时候,需要学习挺多基础性的东西,像verilog语言,虽然有C语言的基础,但是在学习的过程中,却发现两者有很大的区别,其中很重要的一点就是C语言是顺序执行的,而Verilog却是可以并行执行的,所以在学习Verilog时思想要有一个转变。拿到板卡后,我根据电子森林资料文档的介绍安装编译软件Diamond,然后在申请Lincense及生成可执行文件时,均遇到了一些问题,不过这些问题在群友的帮助下顺利的解决了。虽然是第一次接触FPGA,虽然是挑选了一个相对简单的项目,但是能够通过查找相关资料完成这个项目,我也是很开心的,希望自己也能够一直努力,静下心来学习,将自己磨砺的更好!

附件下载
project.zip
本项目工程文件
团队介绍
长江大学 电子信息学院
团队成员
王维维
不断学习,不断进步
评论
0 / 100
查看更多
目录
硬禾服务号
关注最新动态
0512-67862536
info@eetree.cn
江苏省苏州市苏州工业园区新平街388号腾飞创新园A2幢815室
苏州硬禾信息科技有限公司
Copyright © 2024 苏州硬禾信息科技有限公司 All Rights Reserved 苏ICP备19040198号