增量调制(DM)
增量调制(Delta调制)是一种将编码信息信号转换成1个二进制位流的调制方法,在这里只需要1位将1个电平进行编码,这种方式可以每一个取样点传输1位。
由于PCM具有将消息信号直接转换成二进制编码脉冲序列的特性,因此增加了系统的带宽要求。因此,为了消除PCM的缺点,采用了增量调制。
Delta调制的工作原理
DM的工作原理是将当前采样值与之前采样值进行比较,两者的差值决定传输值的增量或减量。简单地说,当两个样本值比较时,我们得到的差异要么具有正极性,要么具有负极性。 如果极性差为正,则Δ表示的信号步长增加1。而当极性差为负时,则信号的阶跃减小,即Δ的减小。当+Δ被注意到,即步长增加时,则传输1。而对于-Δ,即步长减小,则传递0。因此,每个样本只允许传输一个二进制位。
增量调制的框图
首先让我们了解增量调制信号的产生。 增量调制信号的产生 产生增量调制信号的框图如下:
正如我们可以看到上图由LPF,比较器,积调制器以及脉冲发生器和量化器组成。在这里,一个反馈路径也提供给电路,其中调制器的输出作为输入比较器。 将要传输的消息信号馈送给低通滤波器,该滤波器通过低频分量并消除高频分量。它也被称为混叠滤波器。 然后将LPF的输出给比较器,比较器将消息信号m(t)与任意信号m'(t)进行第一次比较。比较器比较两个信号后产生两者的差值。 这种差异可以是正极性,也可以是负极性。这取决于被减去的消息和任意信号。 这个差值信号现在作为乘积调制器的输入。调制器的另一个输入是由脉冲发生器产生的脉冲信号。这两个信号在调制器中相乘。 调制器的输出是一个脉冲信号,其脉冲大小相等,具有正极性和负极性。 极性完全取决于比较器的输出。调制器的输出给量化器。量化器以步骤的形式生成输出。 如果正向幅度脉冲提供给量化器作为其输入,那么量化器执行1步长的增量,Δ。这是很容易理解的,在调制器的输出正脉冲表明消息信号大于任意信号。因此量化器将Δ增加1。 类似地,当脉冲为负幅值时,步长减小1。这是因为m'(t)大于m(t),因此产生了一个负极性的脉冲。 因此,量化器将Δ减少1。 与此同时,调制器的输出通过反馈路径提供给蓄能器。 累加器只不过是一种存储信号以供进一步操作的装置。累加器的输出现在的行为类似于比较器的第二个输入。因此,我们说当前的采样值与前一个采样值进行比较,以便进行进一步的操作。 因此,这个过程以这种方式重复。 最后,根据阶梯信号,如果步长为+Δ,则发送二进制1,如果步长为-Δ,则发送二进制0。
Waveform Representation of Delta Modulation The figure below shows the delta modulation waveform: 这里,模拟输入信号为m(t),量化后的信号表示为u(t)。根据实际传输的步长,二进制序列显示在上图的底部。 增量调制信号的检测 增量调制信号的检测不是一个复杂的过程,在某种程度上与增量调制信号的产生相反。 下图是增量调制信号检测表示的框图。
检测电路主要由蓄电池和LPF组成。传输的二进制信号被提供给累加器部分。 累加器由累加单元和延迟单元组成。传输信号和延迟信号一起加到求和单元。 如果这里的输入是二进制1,那么经过一段延迟后,累加器的输出显示步长增加+Δ。然而,在二进制0作为输入的情况下,步长会减少。这将生成与消息信号等价的楼梯信号。 蓄电池的输出提供给LPF, LPF平滑阶梯信号,以恢复原始的信息信号。
增量调制的优点
- 由于每个样本传输1比特,它允许低通道带宽以及信令速率。
- 不需要ADC。这样便于生成和检测。
增量调制的缺点
- 普通列表项目增量调制导致的缺点,如斜率超载失真和颗粒噪声。
增量调制的应用 它广泛应用于无线电通信设备、数字语音存储和语音信息传输等信号质量不太重要的领域。