NMPSM3软处理器
NMPSM3概述
在UCSC扩展学院上了第一门FPGA课后,我对这些设备为普通人提供的功能感到惊讶,我决定更深入地研究它们。我最终意识到我有足够的逻辑设计知识,可以构建自己的简单处理器。在了解了KCPSM(nanoblaze)之后,我开始构建自己的处理器,并将其称为NMPSM(Nick Mikstas可编程状态机)。我花了三遍迭代才能制作出功能全面的处理器,因此命名为NMPSM3。即使NMPSM3受到nanoblaze IO方案的启发,其内部结构也完全不同。NMPSM3是具有四个独立中断和一个复位的16位处理器。NMPSM至少需要实现四个18Kb BRAMS:一个用于寄存器,一个用于堆栈,一个用于解码器,至少一个用于程序ROM。使处理器正常工作后,我为其编写了汇编程序,并创建了一个大型项目以展示其功能。
当我第一次设计NMPSM3时,它是在Digilent Nexys 2板上实现的。Nexys 2上有Xilinx Spartan 3部件。在成功实施该项目之后,几年来我对NMPSM3一无所获。我最终在SCU上了一门课,基本上和UCSC Extension上的一门课一样。我决定通过更新项目以使其在Digilent Basys 3 FPGA板上工作来使NMPSM3振作起来。由于新的FPGA部件(Artyx 7)比Spartan 3具有更多的功能,因此我也对该项目进行了一些升级。我也写了一份详尽的报告。
NMPSM3屏幕截图
NMPSM3硬件
与处理器一起,我还基于8位Nintendo构建了其他一些模块,包括UART和图片处理单元(PPU)。一些Verilog代码很粗糙,因为在创建此项目时我正在学习Verilog。
Final_Project.v
`timescale 1ns / 1ps module Final_Project( input clk, input [15:0]sw, input btnC, input btnU, input btnD, input btnL, input btnR, input data, input RsRx, output RsTx, output RxTest, output TxTest, output [15:0]led, output [6:0]seg, output [3:0]an, output dp, output [3:0]vgaRed, output [3:0]vgaGreen, output [3:0]vgaBlue, output Hsync, output Vsync, output sclk, output ce ); //UART test ports. assign RxTest = RsRx; assign TxTest = RsTx; wire clk100MHz; wire clk50MHz; wire clk25MHz; wire t0out; wire t1out; wire ack0; wire ack1; wire ack2; wire ack3; wire sigout0; wire sigout1; wire sigout2; wire sigout3; wire ce1k; wire blink; wire read; wire write; wire vblank; wire reset; wire [15:0]id; wire [15:0]outdata; wire [7:0]hour; wire [7:0]min; wire [7:0]sec; wire [35:0]inst; wire [15:0]in_port; wire [15:0]address; wire [7:0]romdata; wire [11:0]mdout; wire [7:0]vgadata; wire [9:0]addr; wire [10:0]romaddress; wire [11:0]mdin; //UART wires. wire [7:0]uartdata; wire [11:0]txcount; wire [11:0]rxcount; //Unused VGA bits in this design. assign vgaRed[0] = 1'b0; assign vgaGreen[0] = 1'b0; assign vgaBlue[0] = 1'b0; assign vgaBlue[1] = 1'b0; //Reset signal. assign reset = btnU; //Flip-flop for interrupt 0. FF ff0(.set(t0out), .reset(ack0), .sigout(sigout0)); //Flip-flop for interrupt 1. FF ff1(.set(t1out), .reset(ack1), .sigout(sigout1)); //Flip-flop for interrupt 2. FF ff2(.set(vblank), .reset(ack2), .sigout(sigout2)); //Flip-flop for interrupt 3(not used). FF ff3(.set(1'b0), .reset(ack3), .sigout(sigout3)); //Divide by 100,000. div100k divideBy100K(.clock(clk100MHz), .ce1k(ce1k)); //Clock divider. clk25 c(.clk_in1(clk), .clk_out1(clk100MHz), .clk_out2(clk50MHz), .clk_out3(clk25MHz)); //NMPSM3 soft processor. NMPSM3 nmpsm3(.clk(clk100MHz), .reset(reset), .IRQ0(sigout0), .IRQ1(sigout1), .IRQ2(sigout2), .IRQ3(sigout3), .INSTRUCTION(inst), .IN_PORT(in_port), .READ_STROBE(read), .WRITE_STROBE(write), .IRQ_ACK0(ack0), .IRQ_ACK1(ack1), .IRQ_ACK2(ack2), .IRQ_ACK3(ack3), .ADDRESS(address), .OUT_PORT(outdata), .PORT_ID(id)); //Program ROM for NMPSM3. Program_ROM prgROM(.clka(clk100MHz), .addra(address[9:0]), .douta(inst)); //Lookup ROM Lookup_ROM lookuprom(.clka(clk100MHz), .addra(romaddress), .douta(romdata)); //UART uart uart1(.clk(clk100MHz), .reset(reset), .id(id), .din(outdata), .write(write), .rx(RsRx), .tx(RsTx), .dout(uartdata), .rxcount(rxcount), .txcount(txcount)); //LED output controller. ledio LEDIO(.clk(clk100MHz), .reset(reset), .write(write), .id(id), .din(outdata), .ledsout(led[7:0])); //LED output controller 2. LEDIO2 ledio2(.clk(clk100MHz), .reset(reset), .write(write), .id(id), .din(outdata), .ledsout(led[15:8])); //Seven segment controller. seg7io seg7control(.clk(clk100MHz), .ce1k(ce1k), .write(write), .reset(reset), .id(id), .din(outdata), .segselect(an), .segs({dp,seg})); //Timer 0. timer0 time0(.clk(clk100MHz), .cein(ce1k), .write(write), .reset(reset), .id(id), .din(outdata), .dout(t0out)); //Timer 1. timer1 time1(.clk(clk100MHz), .cein(ce1k), .write(write), .reset(reset), .id(id), .din(outdata), .dout(t1out)); //ROM controller for lookup ROM. ROMcontroller ROMcontrol(.clk(clk100MHz), .id(id), .ain(outdata), .aout(romaddress)); //Processor input data MUX. dataMUX datamux(.read(read), .blink(blink), .id(id), .i2cdata(16'd0), .i2cstatus(16'd0), .xpos(16'd0), .ypos(16'd0), .uartdata({8'h00,uartdata}), .txcount(txcount), .rxcount(rxcount), .romdata(romdata), .switches(sw), .sec(sec), .min(min), .hour(hour), .micdata({btnD, 3'h0, mdout}), .dout(in_port)); //Clock control. ClockControl clockcontrol(.clock(clk100MHz), .ce_1KHz(ce1k), .button({btnD, btnL, btnC, btnR}), .blink(blink), .hour(hour), .min(min), .sec(sec)); //Picture processing unit. VGA ppu(.clk25MHz(clk25MHz), .clk(clk100MHz), .write(write), .id(id), .data(outdata[7:0]), .vblank(vblank), .vsync(Vsync), .hsync(Hsync), .vga({vgaBlue[3:2], vgaGreen[3:1], vgaRed[3:1]})); //Microphone control. MControl mc(.clk(clk100MHz), .reset(reset), .serialdata(data), .nenable(ce), .sclk(sclk), .micdata(mdout)); endmodule
NMPSM3.v
`timescale 1ns / 1ps module NMPSM3(clk, reset, INSTRUCTION, IN_PORT, IRQ0, IRQ1, IRQ2, IRQ3, ADDRESS, OUT_PORT, PORT_ID, READ_STROBE, WRITE_STROBE, IRQ_ACK0, IRQ_ACK1, IRQ_ACK2, IRQ_ACK3); input clk, reset, IRQ0, IRQ1, IRQ2, IRQ3; input [35:0]INSTRUCTION; input [15:0]IN_PORT; output READ_STROBE, WRITE_STROBE, IRQ_ACK0, IRQ_ACK1, IRQ_ACK2, IRQ_ACK3; output [15:0]PORT_ID; output [15:0]OUT_PORT; output [15:0]ADDRESS; localparam SIZE = 16; localparam JPNZ = 8'h16; localparam JPZ = 8'h19; localparam JPNC = 8'h1C; localparam JPC = 8'h20; localparam CLNZ = 8'h29; localparam CLZ = 8'h2C; localparam CLNC = 8'h30; localparam CLC = 8'h33; localparam RTNZ = 8'h39; localparam RTZ = 8'h3C; localparam RTNC = 8'h40; localparam RTC = 8'h43; localparam IRQADDR0 = 8'hCC; localparam IRQADDR1 = 8'hD0; localparam IRQADDR2 = 8'hD3; localparam IRQADDR3 = 8'hD6; localparam STEP = 8'hD9; wire [43:0]control; wire [15:0]portA; wire [15:0]portB; wire zero; wire [7:0]decodeAddr; wire I0, I1, I2, I3; wire [15:0]addrp1; wire [10:0] addrA; wire [15:0] dataA; wire weA; wire [10:0] addrB; wire [15:0] dataB; wire weB; wire [9:0]stackm1; wire [19:0]none; wire [7:0]portAup; wire [7:0]portAdn; wire [7:0]portBup; wire [7:0]portBdn; wire [4:0]sel; wire [15:0]a; wire [15:0]b; wire [15:0]inst; reg [1:0]IRQload = 2'b00; reg [15:0]wresult = 16'h0000; reg wcarry = 1'b0; reg [15:0]result = 16'h0000; reg carry = 1'b0; reg [1:0]load = 2'b00; reg IRQMreg = 1'b1; reg IRQ0reg = 1'b0; reg IRQ1reg = 1'b0; reg IRQ2reg = 1'b0; reg IRQ3reg = 1'b0; reg [9:0]stack = 10'h000; reg [15:0]addr = 16'h0000; //Used to synchronize interrupts and reset with internal clock. reg IR0 = 1'b0; reg IR1 = 1'b0; reg IR2 = 1'b0; reg IR3 = 1'b0; reg [1:0]rst = 2'b00; RAMB16_S36_S36 #( .INIT_A(36'h000000000), // Value of output RAM registers on Port A at startup .INIT_B(36'h000000000), // Value of output RAM registers on Port B at startup .SRVAL_A(36'h000000000), // Port A output value upon SSR assertion .SRVAL_B(36'h000000000), // Port B output value upon SSR assertion .WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL" // Micro-code for the decoder ROM .INIT_00(256'H00200001_00000000_00000000_04040007_00000000_00000000_04000007_00000000), .INIT_01(256'H00000000_08200007_00000001_00000000_00000000_08000007_00000000_04040007), .INIT_02(256'H00000000_0000000B_00000000_00000000_0000000F_00000000_00000000_0000000B), .INIT_03(256'H00000000_00000000_00000000_0000000B_00000000_00000000_0000000B_00000000), .INIT_04(256'H00000000_1950000F_00000000_00000000_1950000B_00000000_00000000_0000000B), .INIT_05(256'H00000000_00000000_00000000_1950000B_00000000_00000000_1950000B_00000000), .INIT_06(256'H00000017_12300001_00000000_00000000_1950000B_00000000_00000000_1950000B), .INIT_07(256'H00000000_00000000_00000017_12300001_00000000_00000017_12300001_00000000), .INIT_08(256'H00001137_12300001_00000000_00000017_12300001_00000000_00000017_12300001), .INIT_09(256'H00000000_00000000_00000000_44080407_00000000_00001157_12300001_00000000), .INIT_0A(256'H00000000_20000A07_00000000_00000000_20000C07_00000000_00000000_44080207), .INIT_0B(256'H00000000_00000000_00000000_04065007_00000000_00000000_04064007_00000000), .INIT_0C(256'H00000000_04066007_00000000_00000000_04063007_00000000_00000000_04062007), .INIT_0D(256'H00000000_00000000_00000000_0406C007_00000000_00000000_04067007_00000000), .INIT_0E(256'H00000000_04069007_00000000_00000000_0406D007_00000000_00000000_04068007), .INIT_0F(256'H00000000_00000000_00000000_0406A007_00000000_00000000_0406E007_00000000), .INIT_10(256'H00000000_00010007_00000000_00000000_0406B007_00000000_00000000_0406F007), .INIT_11(256'H00000000_00000000_00000000_00012007_00000000_00000000_00011007_00000000), .INIT_12(256'H00000000_04075007_00000000_00000000_04074007_00000000_00000000_00013007), .INIT_13(256'H00000000_00000000_00000000_04077007_00000000_00000000_04076007_00000000), .INIT_14(256'H00000000_00000027_00000000_00000000_00018007_00000000_00000000_00019007), .INIT_15(256'H00000000_00000000_00000000_00000067_00000000_00000000_00000047_00000000), .INIT_16(256'H00000000_000000C7_00000000_00000000_000000A7_00000000_00000000_00000087), .INIT_17(256'H00000000_00000000_00000000_00000107_00000000_00000000_000000E7_00000000), .INIT_18(256'H04040007_12300001_00000000_00000000_00000000_00000000_00000000_19100007), .INIT_19(256'H00000000_00000000_80000013_99900161_00000000_00000000_00000000_00000000), .INIT_1A(256'H00000013_19900161_00000000_00000013_19900161_00000000_00000013_19900161), .INIT_1B(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000007_00000000), .INIT_1C(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_1D(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_1E(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_1F(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_20(256'H00000080_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_21(256'H00000000_00000000_000000E0_00000000_00000000_00000000_00000000_00000000), .INIT_22(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_23(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_24(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_25(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_26(256'H00000000_00000370_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_27(256'H00000000_00000000_00000000_000003D0_00000000_00000000_000003A0_00000000), .INIT_28(256'H00000000_00000470_00000000_00000000_00000440_00000000_00000000_00000410), .INIT_29(256'H00000000_00000000_00000000_00000000_00000000_00000000_000004A0_00000000), .INIT_2A(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_2B(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_2C(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_2D(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_2E(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_2F(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_30(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_31(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_32(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_33(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_34(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_35(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_36(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_37(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_38(256'H00000000_00000C70_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_39(256'H00000000_00000000_00000000_00000CD8_00000000_00000000_00000000_00000000), .INIT_3A(256'H00000004_00000D6C_00000000_00000002_00000D4A_00000000_00000001_00000D19), .INIT_3B(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_3C(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_3D(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_3E(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000), .INIT_3F(256'H00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000)) DecoderROM ( .DOA(control[31:0]), // Port A 32-bit Data Output .DOB({none, control[43:32]}), // Port B 32-bit Data Output .ADDRA({1'b0, decodeAddr}), // Port A 9-bit Address Input .ADDRB({1'b1, decodeAddr}), // Port B 9-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); RAMB16_S9_S9 #( .INIT_A(18'h00000), // Value of output RAM registers on Port A at startup .INIT_B(18'h00000), // Value of output RAM registers on Port B at startup .SRVAL_A(18'h00000), // Port A output value upon SSR assertion .SRVAL_B(18'h00000), // Port B output value upon SSR assertion .WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL")) // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL" RAMupper ( .DOA(portAup), // Port A 16-bit Data Output .DOB(portBup), // Port B 16-bit Data Output .ADDRA(addrA), // Port A 10-bit Address Input .ADDRB(addrB), // Port B 10-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(dataA[15:8]), // Port A 16-bit Data Input .DIB(dataB[15:8]), // Port-B 16-bit Data Input .DIPA(1'b0), // Port A 1-bit parity Input .DIPB(1'b0), // Port B 1-bit parity Input .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(weA), // Port A Write Enable Input .WEB(weB) // Port B Write Enable Input ); RAMB16_S9_S9 #( .INIT_A(18'h00000), // Value of output RAM registers on Port A at startup .INIT_B(18'h00000), // Value of output RAM registers on Port B at startup .SRVAL_A(18'h00000), // Port A output value upon SSR assertion .SRVAL_B(18'h00000), // Port B output value upon SSR assertion .WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL")) // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL" RAMlower ( .DOA(portAdn), // Port A 16-bit Data Output .DOB(portBdn), // Port B 16-bit Data Output .ADDRA(addrA), // Port A 10-bit Address Input .ADDRB(addrB), // Port B 10-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(dataA[7:0]), // Port A 16-bit Data Input .DIB(dataB[7:0]), // Port-B 16-bit Data Input .DIPA(1'b0), // Port A 1-bit parity Input .DIPB(1'b0), // Port B 1-bit parity Input .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(weA), // Port A Write Enable Input .WEB(weB) // Port B Write Enable Input ); always @(posedge clk) begin if(rst) begin carry <= 1'b0; IRQMreg <= 1'b1; IRQ0reg <= 1'b0; IRQ1reg <= 1'b0; IRQ2reg <= 1'b0; IRQ3reg <= 1'b0; stack <= 10'h000; result <= 16'h0000; addr <= 16'h0000; load <= 2'b00; rst <= rst + 1'b1; end else begin result <= wresult; carry <= wcarry; if(control[1]) addr <= ADDRESS; if(control[25:24] == 2'b01) stack <= stack + 1'b1; if(control[25:24] == 2'b10) stack <= stack - 1'b1; if(control[8:5] == 4'b0001) IRQ0reg <=1'b1; if(control[8:5] == 4'b0010) IRQ1reg <=1'b1; if(control[8:5] == 4'b0011) IRQ2reg <=1'b1; if(control[8:5] == 4'b0100) IRQ3reg <=1'b1; if(control[8:5] == 4'b0101) IRQ0reg <=1'b0; if(control[8:5] == 4'b0110) IRQ1reg <=1'b0; if(control[8:5] == 4'b0111) IRQ2reg <=1'b0; if(control[8:5] == 4'b1000) IRQ3reg <=1'b0; if(control[8:5] == 4'b1001) IRQMreg <=1'b1; if(control[8:5] == 4'b1010) begin IRQMreg <= 1'b1; IRQ0reg <= 1'b0; IRQ1reg <= 1'b0; IRQ2reg <= 1'b0; IRQ3reg <= 1'b0; end if(control[8:5] == 4'b1011) IRQMreg <= 1'b0; if(control[35]) load <= {carry, ~zero}; //Synchronize interrupts and reset with the internal clock. if(IRQ0) IR0 <= 1'b1; else IR0 <= 1'b0; if(IRQ1) IR1 <= 1'b1; else IR1 <= 1'b0; if(IRQ2) IR2 <= 1'b1; else IR2 <= 1'b0; if(IRQ3) IR3 <= 1'b1; else IR3 <= 1'b0; if (reset) rst <= 2'b01; end end assign IRQ_ACK0 = control[31]; assign IRQ_ACK1 = control[32]; assign IRQ_ACK2 = control[33]; assign IRQ_ACK3 = control[34]; always @(control) case(control[33:31]) 3'b001 : IRQload <= 2'h1; 3'b010 : IRQload <= 2'h2; 3'b100 : IRQload <= 2'h3; default : IRQload <= 2'h4; endcase and andIRQ0 (I0, IRQMreg, IRQ0reg, IR0); and andIRQ1 (I1, IRQMreg, IRQ1reg, IR1); and andIRQ2 (I2, IRQMreg, IRQ2reg, IR2); and andIRQ3 (I3, IRQMreg, IRQ3reg, IR3); assign decodeAddr = control[0] ? control[43:36] : ({control[0], I0} == 2'b01) ? IRQADDR0 : ({control[0], I0, I1} == 3'b001) ? IRQADDR1 : ({control[0], I0, I1, I2} == 4'b0001) ? IRQADDR2 : ({control[0], I0, I1, I2, I3} == 5'b00001) ? IRQADDR3 : ({zero, INSTRUCTION[35:28]} == {1'b1, JPNZ}) ? STEP : ({zero, INSTRUCTION[35:28]} == {1'b0, JPZ }) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b1, JPNC}) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b0, JPC }) ? STEP : ({zero, INSTRUCTION[35:28]} == {1'b1, CLNZ}) ? STEP : ({zero, INSTRUCTION[35:28]} == {1'b0, CLZ }) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b1, CLNC}) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b0, CLC }) ? STEP : ({zero, INSTRUCTION[35:28]} == {1'b1, RTNZ}) ? STEP : ({zero, INSTRUCTION[35:28]} == {1'b0, RTZ }) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b1, RTNC}) ? STEP : ({carry, INSTRUCTION[35:28]} == {1'b0, RTC }) ? STEP : INSTRUCTION[35:28]; assign PORT_ID = (control[10:9] == 2'b01) ? portB : (control[10:9] == 2'b10) ? INSTRUCTION[15:0] : 16'h0000; assign OUT_PORT = (control[11] == 1'b1) ? portA : 16'h0000; assign WRITE_STROBE = control[29]; assign READ_STROBE = control[30]; assign stackm1 = stack - 1'b1; assign weA = control[26]; assign weB = control[27]; assign addrA = {1'b0, INSTRUCTION[25:16]}; assign portA = {portAup, portAdn}; assign portB = {portBup, portBdn}; assign dataA = (control[19:17] == 3'b001) ? portA : (control[19:17] == 3'b010) ? portB : (control[19:17] == 3'b011) ? wresult : (control[19:17] == 3'b100) ? IN_PORT : INSTRUCTION[15:0]; assign addrB = (control[21:20] == 2'b01) ? {control[28], stack[9:0]} : (control[21:20] == 2'b10) ? {control[28], portB[9:0]} : (control[21:20] == 2'b11) ? {control[28], stackm1[9:0]} : {control[28], INSTRUCTION[9:0]}; assign dataB = (control[23:22] == 2'b01) ? addrp1 : (control[23:22] == 2'b10) ? ADDRESS : portA; assign addrp1 = addr + 1'b1; assign ADDRESS = rst ? 16'h0000 : (control[4:2] == 3'b001) ? addrp1 : (control[4:2] == 3'b010) ? INSTRUCTION[15:0] : (control[4:2] == 3'b011) ? portA : (control[4:2] == 3'b100) ? {14'h0000,IRQload}: (control[4:2] == 3'b101) ? portB : addr; //ALU code begins here. assign zero = (result == 16'h0000) ? 1'b1 : 1'b0; assign inst = INSTRUCTION[15:0]; assign a = portA; assign b = portB; assign sel = control[16:12]; //OR a | b, a | inst wire orc; wire [15:0]orr; assign orc = 1'b0; assign orr = sel[0] ? (a | b) : (a | inst); //AND a & b, a & inst wire andc; wire [15:0]andr; assign andc = 1'b0; assign andr = sel[0] ? (a & b) : (a & inst); //XOR a ^ b, a ^ inst wire xorc; wire [15:0]xorr; assign xorc = 1'b0; assign xorr = sel[0] ? (a ^ b) : (a ^ inst); //ADD ADD a + b, ADDC a + b wire addbcarryin, addbcarryout; wire [15:0]addbresult; assign addbcarryin = sel[0] ? carry : 1'b0; assign {addbcarryout, addbresult} = a + b + addbcarryin; //SUB SUB a - b, SUBC a - b wire subbcarryin, subbcarryout; wire [15:0]subbresult; assign subbcarryin = sel[0] ? carry : 1'b0; assign {subbcarryout, subbresult} = a - b - subbcarryin; //ADD ADD a + inst, ADDC a + inst wire addicarryin, addicarryout; wire [15:0]addiresult; assign addicarryin = sel[0] ? carry : 1'b0; assign {addicarryout, addiresult} = a + inst + addicarryin; //SUB SUB a - inst, SUBC a - inst wire subicarryin, subicarryout; wire [15:0]subiresult; assign subicarryin = sel[0] ? carry : 1'b0; assign {subicarryout, subiresult} = a - inst - subicarryin; //TEST TEST a and b, TEST a and inst wire testc; wire [15:0]testr; assign testc = ^testr; assign testr = sel[0] ? (a & b) : (a & inst); //COMP COMP a to b, COMP a to inst wire tempc1, tempc2, compc; wire [15:0]compr; assign tempc1 = (a < inst) ? 1'b1 : 1'b0; assign tempc2 = (a < b) ? 1'b1 : 1'b0; assign compc = sel[0] ? tempc2 : tempc1; assign compr = sel[0] ? (a ^ b) : (a ^ inst); //LEFT ROL, ASL wire leftc; wire [15:0]leftr; assign leftc = a[15]; assign leftr = sel[0] ? {a[14:0], carry} : {a[14:0], 1'b0}; //RIGHT ROR, LSR wire rightc; wire [15:0]rightr; assign rightc = a[0]; assign rightr = sel[0] ? {carry, a[15:1]} : {1'b0, a[15:1]}; //CARRY SETC, CLRC wire carryc; wire [15:0]carryr; assign carryc = sel[0]; assign carryr = result; //LOAD LOAD carry and result with load, no change. wire loadc; wire [15:0]loadr; assign loadc = sel[0] ? load[1] : carry; assign loadr = sel[0] ? {15'h0000, load[0]} : result; //MUX results always @(*) case(sel[4:1]) 4'b0000 : wresult <= loadr; 4'b0001 : wresult <= orr; 4'b0010 : wresult <= andr; 4'b0011 : wresult <= xorr; 4'b0100 : wresult <= addbresult; 4'b0101 : wresult <= subbresult; 4'b0110 : wresult <= addiresult; 4'b0111 : wresult <= subiresult; 4'b1000 : wresult <= testr; 4'b1001 : wresult <= compr; 4'b1010 : wresult <= leftr; 4'b1011 : wresult <= rightr; 4'b1100 : wresult <= carryr; default : wresult <= loadr; endcase always @(*) case(sel[4:1]) 4'b0000 : wcarry <= loadc; 4'b0001 : wcarry <= orc; 4'b0010 : wcarry <= andc; 4'b0011 : wcarry <= xorc; 4'b0100 : wcarry <= addbcarryout; 4'b0101 : wcarry <= subbcarryout; 4'b0110 : wcarry <= addicarryout; 4'b0111 : wcarry <= subicarryout; 4'b1000 : wcarry <= testc; 4'b1001 : wcarry <= compc; 4'b1010 : wcarry <= leftc; 4'b1011 : wcarry <= rightc; 4'b1100 : wcarry <= carryc; default : wcarry <= loadc; endcase endmodule
VGA.v
`timescale 1ns / 1ps //Address ports: //0x8000 - 0x87FF Background pattern table A. //0x8800 - 0x8FFF Background pattern table B. //0x9000 - 0x97FF Sprite pattern table A. //0x9800 - 0x9FFF Sprite pattern table B. //0xA000 - 0xA3FF Name table. //0xA400 - 0xA4FF Unused. //0xA500 - 0xA5FF Background attribute table. //0xA600 - 0xA60F Background pallettes 0 through 15. //0xA610 - 0xA61F Sprite pallettes 0 through 15. //0xA700 Base color (background color). //0xB000 - 0xB3FF Sprite RAM (256 sprites). module VGA( input clk25MHz, input clk, input write, input [15:0]id, input [7:0]data, output reg vblank = 1'b0, output reg vsync = 1'b1, output reg hsync = 1'b1, output reg [7:0]vga = 8'h00 ); parameter WAIT = 5'h00; parameter NTAT = 5'h01; parameter PTAB = 5'h02; parameter BUFF = 5'h03; parameter NEXT = 5'h04; parameter SPRAM = 5'h05; parameter SAB = 5'h06; parameter WRIT0 = 5'h07; parameter WRIT1 = 5'h08; parameter WRIT2 = 5'h09; parameter WRIT3 = 5'h0A; parameter WRIT4 = 5'h0B; parameter WRIT5 = 5'h0C; parameter WRIT6 = 5'h0D; parameter WRIT7 = 5'h0E; parameter BUFF0 = 5'h0F; parameter BUFF1 = 5'h10; parameter BUFF2 = 5'h11; parameter BUFF3 = 5'h12; parameter BUFF4 = 5'h13; parameter BUFF5 = 5'h14; parameter BUFF6 = 5'h15; parameter BUFF7 = 5'h16; reg [9:0]hcount = 10'h001; reg [9:0]vcount = 10'h001; reg [9:0]nextpixel = 10'h000; reg [9:0]nextpixel2 = 10'h000; reg [8:0]currline = 9'h000; reg [9:0]next256pixel = 9'h000; wire [8:0]nxt256pix; wire [7:0]cur256line; wire [7:0]nxt256line; wire [7:0]colorout; reg [8:0]currsprite = 9'h000; reg [7:0]basecolor = 8'h00; reg [7:0]bgpal0 = 8'b00000000; reg [7:0]bgpal1 = 8'b00111000; reg [7:0]bgpal2 = 8'b00100000; reg [7:0]bgpal3 = 8'b00011000; reg [7:0]bgpal4 = 8'b00000000; reg [7:0]bgpal5 = 8'b00111111; reg [7:0]bgpal6 = 8'b00100100; reg [7:0]bgpal7 = 8'b00011011; reg [7:0]bgpal8 = 8'b00000000; reg [7:0]bgpal9 = 8'b00011111; reg [7:0]bgpal10 = 8'b00010100; reg [7:0]bgpal11 = 8'b00001010; reg [7:0]bgpal12 = 8'b00000000; reg [7:0]bgpal13 = 8'b00000111; reg [7:0]bgpal14 = 8'b00000100; reg [7:0]bgpal15 = 8'b00000011; reg [7:0]sppal0 = 8'b00000000; reg [7:0]sppal1 = 8'b00100110; reg [7:0]sppal2 = 8'b00111111; reg [7:0]sppal3 = 8'b00000010; reg [7:0]sppal4 = 8'b00000000; reg [7:0]sppal5 = 8'b10111111; reg [7:0]sppal6 = 8'b10100100; reg [7:0]sppal7 = 8'b10011011; reg [7:0]sppal8 = 8'b00000000; reg [7:0]sppal9 = 8'b10011111; reg [7:0]sppal10 = 8'b10010100; reg [7:0]sppal11 = 8'b10001010; reg [7:0]sppal12 = 8'b00000000; reg [7:0]sppal13 = 8'b10000111; reg [7:0]sppal14 = 8'b10000100; reg [7:0]sppal15 = 8'b10000011; always @(posedge clk) begin if(id == 16'hA600 && write) bgpal0 <= data; if(id == 16'hA601 && write) bgpal1 <= data; if(id == 16'hA602 && write) bgpal2 <= data; if(id == 16'hA603 && write) bgpal3 <= data; if(id == 16'hA604 && write) bgpal4 <= data; if(id == 16'hA605 && write) bgpal5 <= data; if(id == 16'hA606 && write) bgpal6 <= data; if(id == 16'hA607 && write) bgpal7 <= data; if(id == 16'hA608 && write) bgpal8 <= data; if(id == 16'hA609 && write) bgpal9 <= data; if(id == 16'hA60A && write) bgpal10 <= data; if(id == 16'hA60B && write) bgpal11 <= data; if(id == 16'hA60C && write) bgpal12 <= data; if(id == 16'hA60D && write) bgpal13 <= data; if(id == 16'hA60E && write) bgpal14 <= data; if(id == 16'hA60F && write) bgpal15 <= data; if(id == 16'hA610 && write) sppal0 <= data; if(id == 16'hA611 && write) sppal1 <= data; if(id == 16'hA612 && write) sppal2 <= data; if(id == 16'hA613 && write) sppal3 <= data; if(id == 16'hA614 && write) sppal4 <= data; if(id == 16'hA615 && write) sppal5 <= data; if(id == 16'hA616 && write) sppal6 <= data; if(id == 16'hA617 && write) sppal7 <= data; if(id == 16'hA618 && write) sppal8 <= data; if(id == 16'hA619 && write) sppal9 <= data; if(id == 16'hA61A && write) sppal10 <= data; if(id == 16'hA61B && write) sppal11 <= data; if(id == 16'hA61C && write) sppal12 <= data; if(id == 16'hA61D && write) sppal13 <= data; if(id == 16'hA61E && write) sppal14 <= data; if(id == 16'hA61F && write) sppal15 <= data; if(id == 16'hA700 && write) basecolor <= data; end //Line buffer wires and regs. reg lbwe = 1'b0; wire [8:0]lbaddra; wire [7:0]lbdin; wire lbrstb; wire [8:0]lbaddrb; wire [7:0]lbdout; wire [7:0]lbcheck; RAMB16_S9_S9 #( //Test pattern. .INIT_00(256'h00_01_02_03_04_05_06_07_08_09_0A_0B_0C_0D_0E_0F_10_11_12_13_14_15_16_17_18_19_1A_1B_1C_1D_1E_1F), .INIT_01(256'h20_21_22_23_24_25_26_27_28_29_2A_2B_2C_2D_2E_2F_30_31_32_33_34_35_36_37_38_39_3A_3B_3C_3D_3E_3F), .INIT_02(256'h40_41_42_43_44_45_46_47_48_49_4A_4B_4C_4D_4E_4F_50_51_52_53_54_55_56_57_58_59_5A_5B_5C_5D_5E_5F), .INIT_03(256'h60_61_62_63_64_65_66_67_68_69_6A_6B_6C_6D_6E_6F_70_71_72_73_74_75_76_77_78_79_7A_7B_7C_7D_7E_7F), .INIT_04(256'h80_81_82_83_84_85_86_87_88_89_8A_8B_8C_8D_8E_8F_90_91_92_93_94_95_96_97_98_99_9A_9B_9C_9D_9E_9F), .INIT_05(256'hA0_A1_A2_A3_A4_A5_A6_A7_A8_A9_AA_AB_AC_AD_AE_AF_B0_B1_B2_B3_B4_B5_B6_B7_B8_B9_BA_BB_BC_BD_BE_BF), .INIT_06(256'hC0_C1_C2_C3_C4_C5_C6_C7_C8_C9_CA_CB_CC_CD_CE_CF_D0_D1_D2_D3_D4_D5_D6_D7_D8_D9_DA_DB_DC_DD_DE_DF), .INIT_07(256'hE0_E1_E2_E3_E4_E5_E6_E7_E8_E9_EA_EB_EC_ED_EE_EF_F0_F1_F2_F3_F4_F5_F6_F7_F8_F9_FA_FB_FC_FD_FE_FF), .INIT_08(256'h0F_0E_0D_0C_0B_0A_09_08_07_06_05_04_03_02_01_00_1F_1E_1D_1C_1B_1A_19_18_17_16_15_14_13_12_11_10), .INIT_09(256'h2F_2E_2D_2C_2B_2A_29_28_27_26_25_24_23_22_21_20_3F_3E_3D_3C_3B_3A_39_38_37_36_35_34_33_32_31_30), .INIT_0A(256'h4F_4E_4D_4C_4B_4A_49_48_47_46_45_44_43_42_41_40_5F_5E_5D_5C_5B_5A_59_58_57_56_55_54_53_52_51_50), .INIT_0B(256'h6F_6E_6D_6C_6B_6A_69_68_67_66_65_64_63_62_61_60_7F_7E_7D_7C_7B_7A_79_78_77_76_75_74_73_72_71_70), .INIT_0C(256'h8F_8E_8D_8C_8B_8A_89_88_87_86_85_84_83_82_81_80_9F_9E_9D_9C_9B_9A_99_98_97_96_95_94_93_92_91_90), .INIT_0D(256'hAF_AE_AD_AC_AB_AA_A9_A8_A7_A6_A5_A4_A3_A2_A1_A0_BF_BE_BD_BC_BB_BA_B9_B8_B7_B6_B5_B4_B3_B2_B1_B0), .INIT_0E(256'hCF_CE_CD_CC_CB_CA_C9_C8_C7_C6_C5_C4_C3_C2_C1_C0_DF_DE_DD_DC_DB_DA_D9_D8_D7_D6_D5_D4_D3_D2_D1_D0), .INIT_0F(256'hEF_EE_ED_EC_EB_EA_E9_E8_E7_E6_E5_E4_E3_E2_E1_E0_FF_FE_FD_FC_FB_FA_F9_F8_F7_F6_F5_F4_F3_F2_F1_F0)) LineBufferRAM ( .DOA(lbcheck), .DOB(lbdout), // Port B 8-bit Data Output .ADDRA({2'b00, lbaddra}), // Port A 11-bit Address Input .ADDRB({2'b00, lbaddrb}), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk25MHz), // Port B Clock .DIA(lbdin), // Port A 8-bit Data Input .DIPA(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(lbrstb), // Port B Synchronous Set/Reset Input .WEA(lbwe), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); //Name table wires and regs. wire [7:0]ntdout; wire [9:0]ntaddra; wire [9:0]ntaddrb; wire [7:0]ntdin; wire ntwe; assign ntdin = data; assign ntaddrb = id - 16'hA000; assign ntwe = (id >= 16'hA000 && id <= 16'hA3FF) ? write : 1'b0; RAMB16_S9_S9 #( .INIT_00(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_01(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_02(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_03(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_04(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_05(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_06(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_07(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_08(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_09(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0A(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0B(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0C(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0D(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0E(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_0F(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_10(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_11(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_12(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_13(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_14(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_15(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_16(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_17(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_18(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_19(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1A(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1B(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1C(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1D(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1E(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF), .INIT_1F(256'hFF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF_FF)) NameTableRAM ( .DOA(ntdout), // Port B 8-bit Data Output .ADDRA({1'b0, ntaddra}), // Port A 11-bit Address Input .ADDRB({1'b0, ntaddrb}), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIB(ntdin), // Port A 8-bit Data Input .DIPB(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(ntwe) // Port B Write Enable Input ); //Background pattern table A wires. wire [7:0]bgptadout; wire [10:0]bgptaaddra; wire [10:0]bgptaaddrb; wire [7:0]bgptadin; wire bgptawe; assign bgptadin = data; assign bgptaaddrb = id - 16'h8000; assign bgptawe = (id >= 16'h8000 && id <= 16'h87FF) ? write : 1'b0; RAMB16_S9_S9 #( .INIT_00(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_01(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_02(256'h00_FC_C6_C6_FC_C6_C6_FC_00_C6_C6_FE_C6_C6_6C_38_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_03(256'h00_C0_C0_C0_FC_C0_C0_FE_00_FE_C0_C0_FC_C0_C0_FE_00_F8_CC_C6_C6_C6_CC_F8_00_3C_66_C0_C0_C0_66_3C), .INIT_04(256'h00_7C_C6_C6_06_06_06_1E_00_7E_18_18_18_18_18_7E_00_C6_C6_C6_FE_C6_C6_C6_00_3E_66_C6_CE_C0_60_3E), .INIT_05(256'h00_C6_CE_DE_FE_F6_E6_C6_00_C6_C6_D6_FE_FE_EE_C6_00_7E_60_60_60_60_60_60_00_CE_DC_F8_F0_D8_CC_C6), .INIT_06(256'h00_CE_DC_F8_CE_C6_C6_FC_00_7A_CC_DE_C6_C6_C6_7C_00_C0_C0_FC_C6_C6_C6_FC_00_7C_C6_C6_D6_C6_C6_7C), .INIT_07(256'h00_10_38_7C_EE_C6_C6_C6_00_7C_C6_C6_C6_C6_C6_C6_00_18_18_18_18_18_18_7E_00_7C_C6_06_7C_C0_CC_78), .INIT_08(256'h00_FE_E0_70_38_1C_0E_FE_00_18_18_18_3C_66_66_66_00_C6_EE_7C_38_7C_EE_C6_00_C6_EE_FE_FE_D6_C6_C6), .INIT_09(256'h00_1C_24_24_1C_04_04_00_00_38_40_40_40_38_00_00_00_38_24_24_38_20_20_00_00_34_48_48_38_08_30_00), .INIT_0A(256'h00_24_24_24_38_20_20_00_00_08_14_0C_3A_48_30_00_00_10_10_10_3C_10_18_00_00_3C_40_78_44_38_00_00), .INIT_0B(256'h00_16_08_14_14_14_08_00_00_4C_70_50_48_40_40_00_00_30_48_08_08_00_08_00_00_10_10_10_00_10_00_00), .INIT_0C(256'h00_20_20_38_24_24_38_00_00_30_48_48_48_30_00_00_00_48_48_48_48_30_00_00_00_54_54_54_54_28_00_00), .INIT_0D(256'h00_18_20_20_20_70_20_00_00_78_04_38_40_38_00_00_00_10_10_10_1C_60_00_00_00_04_0A_38_48_48_30_00), .INIT_0E(256'h00_44_28_10_28_44_00_00_00_28_54_54_54_44_00_00_00_10_38_28_44_44_00_00_00_34_48_48_48_48_00_00), .INIT_0F(256'h00_00_00_00_7C_00_00_00_00_08_00_08_02_22_1C_00_00_7C_20_10_08_7C_00_00_00_18_24_04_1C_24_24_00), .INIT_10(256'h04_04_FC_00_00_00_00_01_20_20_3F_00_00_00_00_80_80_00_00_00_00_00_00_00_01_00_00_00_00_00_00_00), .INIT_11(256'h82_82_82_82_82_82_82_82_FF_00_00_00_00_00_FF_00_FE_02_02_02_02_02_FE_00_7F_40_40_40_40_40_7F_00), .INIT_12(256'h00_00_FF_80_00_00_00_80_00_00_FF_01_00_00_00_01_82_82_82_82_82_02_04_08_41_41_41_41_41_40_20_10), .INIT_13(256'h10_60_80_00_00_00_00_00_08_06_01_00_00_00_00_00_02_02_04_08_10_60_80_00_40_40_20_10_08_06_01_00), .INIT_14(256'h01_00_00_00_00_FC_04_04_80_00_00_00_00_3F_20_20_00_00_00_00_00_00_00_80_00_00_00_00_00_00_00_01), .INIT_15(256'h00_FF_00_00_00_00_00_FF_41_41_41_41_41_41_41_41_00_FE_82_82_82_82_82_82_00_7F_40_40_40_40_40_7F), .INIT_16(256'h80_00_00_00_80_FF_00_00_01_00_00_00_01_FF_00_00_08_04_02_82_82_82_82_82_10_20_40_41_41_41_41_41), .INIT_17(256'h00_00_00_00_00_80_60_10_00_00_00_00_00_01_06_08_00_80_60_10_08_04_02_02_00_01_06_08_10_20_40_40), .INIT_18(256'h00_00_00_00_00_7F_40_40_40_40_7F_00_00_00_00_00_00_00_FF_00_00_00_00_00_00_00_00_00_00_FF_00_00), .INIT_19(256'h20_20_20_20_10_08_04_02_80_80_00_00_00_00_00_00_00_00_01_01_02_0C_F0_00_00_80_40_20_10_0C_03_00), .INIT_1A(256'h00_00_00_00_00_3F_20_20_04_04_FC_80_80_80_80_80_00_00_C0_40_40_40_40_C0_00_00_1F_10_08_04_02_01), .INIT_1B(256'h1C_22_41_41_41_22_1C_00_00_80_80_80_80_80_80_80_80_80_80_80_80_FC_04_04_40_40_40_40_40_C0_00_00), .INIT_1C(256'h41_40_40_40_40_40_7F_00_00_FE_02_02_02_02_02_FE_00_7F_40_40_40_40_40_40_01_00_00_00_00_00_00_00), .INIT_1D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_61_41_43_00_61_41_43_00_40_40_41_41_41_41_41_41), .INIT_1E(256'h00_00_00_00_00_00_00_00_FF_FF_AA_55_AA_55_AA_55_AA_55_AA_55_AA_55_AA_55_AA_55_AA_55_AA_55_FF_FF), .INIT_1F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_61_41_43_00_61_41_43_00), .INIT_20(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_21(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_22(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_23(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_24(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_25(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_26(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_27(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_28(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_29(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_30(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_31(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_32(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_33(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_34(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_35(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_36(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_37(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_38(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_39(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00)) BGPatternTableARAM ( .DOA(bgptadout), // Port B 8-bit Data Output .ADDRA(bgptaaddra), // Port A 11-bit Address Input .ADDRB(bgptaaddrb), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIB(bgptadin), // Port A 8-bit Data Input .DIPB(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(bgptawe) // Port B Write Enable Input ); //Background pattern table B wires. wire [7:0]bgptbdout; wire [10:0]bgptbaddra; wire [10:0]bgptbaddrb; wire [7:0]bgptbdin; wire bgptbwe; assign bgptbdin = data; assign bgptbaddrb = id - 16'h8800; assign bgptbwe = (id >= 16'h8800 && id <= 16'h8FFF) ? write : 1'b0; RAMB16_S9_S9 #( .INIT_00(256'h00_7C_C6_06_3C_18_0C_7E_00_FE_E0_78_3C_0E_C6_7C_00_7E_18_18_18_18_38_18_00_7C_C6_C6_C6_C6_C6_7C), .INIT_01(256'h00_30_30_30_18_0C_C6_FE_00_7C_C6_C6_FC_C0_60_3C_00_7C_C6_06_06_FC_C0_FC_00_0C_0C_FE_CC_6C_3C_1C), .INIT_02(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_78_0C_06_7E_C6_C6_7C_00_7C_C6_C6_7C_C6_C6_7C), .INIT_03(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_04(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_05(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_06(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_07(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_08(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_09(256'h00_1C_24_24_1C_04_04_00_00_38_40_40_40_38_00_00_00_38_24_24_38_20_20_00_00_34_48_48_38_08_30_00), .INIT_0A(256'h00_24_24_24_38_20_20_00_00_08_14_0C_3A_48_30_00_00_10_10_10_3C_10_18_00_00_3C_40_78_44_38_00_00), .INIT_0B(256'h00_16_08_14_14_14_08_00_00_4C_70_50_48_40_40_00_00_30_48_08_08_00_08_00_00_10_10_10_00_10_00_00), .INIT_0C(256'h00_20_20_38_24_24_38_00_00_30_48_48_48_30_00_00_00_48_48_48_48_30_00_00_00_54_54_54_54_28_00_00), .INIT_0D(256'h00_18_20_20_20_70_20_00_00_78_04_38_40_38_00_00_00_10_10_10_1C_60_00_00_00_04_0A_38_48_48_30_00), .INIT_0E(256'h00_44_28_10_28_44_00_00_00_28_54_54_54_44_00_00_00_10_38_28_44_44_00_00_00_34_48_48_48_48_00_00), .INIT_0F(256'h00_00_00_00_7C_00_00_00_00_08_00_08_02_22_1C_00_00_7C_20_10_08_7C_00_00_00_18_24_04_1C_24_24_00), .INIT_10(256'hF8_F8_00_00_00_00_00_01_3F_3F_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_11(256'hFC_FC_FC_FC_FC_FC_FC_FC_FF_FF_FF_FF_FF_FF_00_00_FC_FC_FC_FC_FC_FC_00_00_7F_7F_7F_7F_7F_7F_00_00), .INIT_12(256'hFF_FF_00_00_00_00_00_00_FF_FF_00_00_00_00_00_01_FC_FC_FC_FC_FC_FC_F8_F0_7E_7E_7E_7E_7E_7F_3F_1F), .INIT_13(256'hE0_80_00_00_00_00_00_00_0F_07_00_00_00_00_00_00_FC_FC_F8_F0_E0_80_00_00_7F_7F_3F_1F_0F_07_00_00), .INIT_14(256'h00_00_00_00_00_F8_F8_F8_00_00_00_00_00_3F_3F_3F_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_01), .INIT_15(256'h00_FF_FF_FF_FF_FF_FF_00_7E_7E_7E_7E_7E_7E_7E_7E_00_FC_FC_FC_FC_FC_FC_FC_00_7F_7F_7F_7F_7F_7F_00), .INIT_16(256'h00_00_00_00_00_FF_FF_FF_00_00_00_00_01_FF_FF_FF_F0_F8_FC_FC_FC_FC_FC_FC_1F_3F_7F_7E_7E_7E_7E_7E), .INIT_17(256'h00_00_00_00_00_00_80_E0_00_00_00_00_00_01_07_0F_00_80_80_E0_F0_F8_FC_FC_00_01_07_0F_1F_3F_7F_7F), .INIT_18(256'h00_00_00_00_00_7F_7F_7F_7F_7F_00_00_00_00_00_00_FF_FF_00_00_00_00_00_00_00_00_00_00_00_FF_FF_FF), .INIT_19(256'h3F_3F_3F_3F_1F_0F_07_03_00_00_00_00_00_00_00_00_FF_FF_FE_FE_FC_F0_00_00_FF_FF_7F_3F_1F_0F_00_00), .INIT_1A(256'h00_00_00_00_00_3F_3F_3F_F8_F8_00_00_00_00_00_00_FF_FF_7F_7F_7F_7F_7F_7F_FF_FF_E0_E0_F0_F8_FC_FE), .INIT_1B(256'h1C_3C_7E_7E_7E_3C_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_F8_F8_F8_7F_7F_7F_7F_7F_FF_FF_FF), .INIT_1C(256'h7F_7F_7F_7F_7F_7F_00_00_00_FC_FC_FC_FC_FC_FC_00_00_7F_7F_7F_7F_7F_7F_7F_01_00_00_00_00_00_00_00), .INIT_1D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_7F_7F_7E_7E_7E_7E_7E_7E), .INIT_1E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_1F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_7E_7E_7C_00_7E_7E_7C_00), .INIT_20(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_21(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_22(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_23(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_24(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_25(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_26(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_27(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_28(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_29(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_30(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_31(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_32(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_33(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_34(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_35(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_36(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_37(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_38(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_39(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00)) BGPatternTableBRAM ( .DOA(bgptbdout), // Port B 8-bit Data Output .ADDRA(bgptbaddra), // Port A 11-bit Address Input .ADDRB(bgptbaddrb), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIB(bgptbdin), // Port A 8-bit Data Input .DIPB(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(bgptbwe) // Port B Write Enable Input ); //Background attribute table wires. wire [7:0]bgatdout; wire [7:0]bgataddra; wire [7:0]bgataddrb; wire [7:0]bgatdin; wire bgatwe; assign bgatdin = data; assign bgataddrb = id - 16'hA500; assign bgatwe = (id >= 16'hA500 && id <= 16'hA5FF) ? write : 1'b0; RAMB16_S9_S9 #( .INIT_00(256'hAA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA), .INIT_01(256'hAA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA), .INIT_02(256'hAA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA), .INIT_03(256'hFF_FF_FF_FF_FF_FF_FF_FF_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA), .INIT_04(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_05(256'h56_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_56_55_55_55_55_55_55_55), .INIT_06(256'hAA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55_55), .INIT_07(256'hAA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA_AA)) BGAttributeTableRAM ( .DOA(bgatdout), // Port B 8-bit Data Output .ADDRA({3'h0, bgataddra}), // Port A 11-bit Address Input .ADDRB({3'h0, bgataddrb}), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIB(bgatdin), // Port A 8-bit Data Input .DIPB(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(bgatwe) // Port B Write Enable Input ); //Sprite RAM wires. wire spwe; wire [9:0]spaddra; wire [7:0]spdin; wire [7:0]spaddrb; wire [31:0]spdout; assign spwe = (id >= 16'hB000 && id <= 16'hB3FF) ? write : 1'b0; assign spaddra = id - 16'hB000; assign spdin = data; assign spaddrb = (currsprite) ? currsprite - 1'b1 : 8'h00; BRAM_TDP_MACRO #( .BRAM_SIZE("36Kb"), // Target BRAM: "18Kb" or "36Kb" .READ_WIDTH_A (8), // Valid values are 1-36 (19-36 only valid when BRAM_SIZE="36Kb") .READ_WIDTH_B (32), // Valid values are 1-36 (19-36 only valid when BRAM_SIZE="36Kb") .WRITE_WIDTH_A(8), // Valid values are 1-36 (19-36 only valid when BRAM_SIZE="36Kb") .WRITE_WIDTH_B(32), // Valid values are 1-36 (19-36 only valid when BRAM_SIZE="36Kb") .INIT_00(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_01(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_02(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_03(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_04(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_05(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_06(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_07(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_08(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_09(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0A(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0B(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0C(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0D(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0E(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_0F(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_10(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_11(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_12(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_13(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_14(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_15(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_16(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_17(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_18(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_19(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1A(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1B(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1C(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1D(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1E(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF), .INIT_1F(256'h00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF__00_00_00_FF) ) SpriteRAM ( .DOB(spdout), // Port B 32-bit Data Output .ADDRA({2'b00, spaddra}), // Port A 12-bit Address Input .ADDRB({2'b00, spaddrb}), // Port B 10-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(spdin), // Port A 8-bit Data Input .DIB(32'h00000000), // Port B 32-bit Data Input .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .RSTA(1'b0), // 1-bit input port-A reset .RSTB(1'b0), // 1-bit input port-B reset .WEA(spwe), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); wire awe; wire [10:0]aaddra; wire [7:0]adin; wire [10:0]aaddrb; wire [7:0]adout; assign awe = (id >= 16'h9000 && id <= 16'h97FF) ? write : 1'b0; assign aaddra = id - 16'h9000; assign adin = data; RAMB16_S9_S9 #( .INIT_00(256'hD0_70_F8_F8_F8_F0_E0_80_3E_0F_06_25_16_1F_0F_03_E0_30_F0_F0_E0_C0_00_00_1D_0D_4B_2D_3F_1F_07_00), .INIT_01(256'h30_70_7C_FE_ED_ED_F6_F6_E0_E0_F0_F0_F0_E0_C0_00_7D_1F_0D_4B_2D_3F_1F_07_00_3C_7E_7E_7E_7E_3C_00), .INIT_02(256'h04_64_00_12_00_09_27_00_6E_38_08_48_A0_D0_E0_80_76_1C_10_12_05_0B_07_01_00_00_00_60_E0_C0_80_00), .INIT_03(256'hEC_CC_9C_98_B8_F0_E0_C0_5C_B0_60_A4_68_F8_F0_C0_0F_0F_1F_1F_1F_0F_07_01_04_28_00_48_20_50_60_84), .INIT_04(256'hE0_E0_F8_FE_FF_FF_FB_BE_01_03_33_1D_0E_06_0B_1D_C0_E0_F8_F8_38_F0_E0_40_13_0B_0B_1D_0D_15_3A_7B), .INIT_05(256'h00_00_00_00_20_00_00_20_E0_E0_F0_F8_FC_F6_EE_F8_33_7B_FD_FE_EF_67_11_3F_BD_18_18_18_00_3C_18_18), .INIT_06(256'h01_00_C0_11_70_2C_D8_0A_EF_93_63_F2_FE_FC_BF_5F_09_91_C6_4F_7F_3F_FD_FA_68_FC_AE_F7_DA_77_3F_0C), .INIT_07(256'hFF_FF_FE_FE_FE_F6_F6_EE_9A_3E_FC_E0_F8_FC_FE_BE_07_07_0F_0E_1E_1D_1D_1E_04_00_20_10_6E_E8_93_50), .INIT_08(256'h3C_70_60_E0_E0_F0_F0_F0_1D_03_1F_1E_38_77_7F_3F_F8_E0_E0_E0_F0_F0_F0_E0_01_00_01_01_00_00_01_01), .INIT_09(256'h00_18_B8_B0_B0_C0_C0_00_1C_3F_3F_77_E3_F1_F1_F0_1C_0E_0E_07_07_03_01_01_00_00_00_00_18_BD_FF_99), .INIT_0A(256'h70_98_C0_08_58_62_38_20_18_38_30_30_7C_66_F6_FF_18_1C_0C_0C_02_00_01_01_7F_FF_FF_3F_FF_FF_FF_40), .INIT_0B(256'hFF_FF_FF_FF_FF_FF_FF_FF_F0_38_38_70_F0_E0_C0_80_07_07_07_07_07_0F_0F_0F_0E_05_4B_10_12_06_04_00), .INIT_0C(256'h03_01_00_01_02_07_1F_3F_00_00_00_00_00_00_78_3C_7A_37_0F_1F_3E_3F_7B_FE_00_00_08_3C_38_3C_08_00), .INIT_0D(256'h00_00_18_3C_3C_34_18_00_00_80_C0_C0_80_00_00_18_3E_1E_09_07_07_07_0E_1C_80_C0_C0_C0_C0_00_C0_80), .INIT_0E(256'h00_3D_1D_0B_07_07_07_07_00_00_66_66_66_00_00_00_70_F8_F0_08_78_38_38_38_FF_FF_FF_FF_FF_FF_FF_00), .INIT_0F(256'h81_80_A7_A3_A3_91_60_1F_74_A0_A4_80_20_40_00_00_01_07_23_AA_DD_6A_A1_48_3C_1C_83_8F_9F_3E_F8_F0), .INIT_10(256'hCC_DE_BE_7C_F0_E0_88_FC_07_07_07_07_1F_37_37_1F_E0_80_C0_F0_60_A8_5C_DE_07_0F_1F_1F_1C_0F_07_02), .INIT_11(256'h03_05_0D_0E_3E_36_7A_7D_00_00_00_00_02_00_00_02_80_80_38_1C_1C_38_D0_B8_07_07_18_7C_FC_F8_C7_7D), .INIT_12(256'h00_00_00_00_40_00_00_40_C0_E0_D0_B0_FC_7C_BE_FE_07_07_0F_1F_3E_3F_1F_0F_E0_F0_F8_FC_DE_EE_FC_F0), .INIT_13(256'hFF_93_9F_95_93_93_83_81_14_2D_16_3A_1D_4A_5C_A8_0F_17_1A_1C_1C_38_38_38_3C_66_C3_99_99_C3_66_3C), .INIT_14(256'h78_F0_E0_E0_C0_C0_00_00_5F_74_77_3F_3F_1F_07_00_FC_F8_F8_F0_C0_00_00_00_33_1B_1F_0F_03_00_00_00), .INIT_15(256'h14_3E_7C_5E_7C_7E_3F_14_A0_C0_E0_E0_40_00_00_00_7B_BD_DE_EF_FF_FF_FE_F8_FB_FC_7F_7F_1F_07_03_00), .INIT_16(256'h00_00_00_00_00_00_00_00_3F_1F_0F_1F_3F_7B_71_20_00_17_14_54_57_B4_17_00_00_49_49_49_49_49_E9_00), .INIT_17(256'hE0_40_60_F0_F0_60_40_E0_01_00_11_77_77_11_00_01_00_00_00_00_00_00_00_00_3C_66_C3_81_81_C3_66_3C), .INIT_18(256'hFE_DE_7E_FE_FC_7C_FC_78_3D_3F_1F_78_7C_7E_3F_1F_C0_70_F8_F8_FC_FC_FC_FC_03_0F_1F_1F_3F_3F_3F_37), .INIT_19(256'h00_00_00_00_00_00_40_20_00_00_00_00_20_60_60_60_00_C0_D8_F8_BC_BE_AF_B7_00_00_11_3B_7F_7F_F7_F7), .INIT_1A(256'hC0_80_80_00_00_00_00_00_00_08_18_30_F0_60_C0_80_18_00_00_48_00_00_00_00_1C_3E_7F_7F_7F_7F_3E_1C), .INIT_1B(256'hFF_01_7D_7D_7D_7D_7D_01_FF_01_41_41_41_41_7D_01_00_00_00_00_00_00_00_00_F0_F0_F0_E0_E0_E0_C0_C0), .INIT_1C(256'hD0_B8_78_F0_F8_DC_BE_7E_07_03_00_01_01_07_1F_3F_3C_7E_F3_C1_C1_F3_7E_3C_3C_7E_F3_C1_C1_F3_7E_3C), .INIT_1D(256'h07_07_0F_0F_0F_1F_1F_1F_FE_FE_C0_FC_FC_C0_FE_FE_20_30_98_36_4A_35_48_02_0A_09_05_01_00_00_00_00), .INIT_1E(256'h05_05_05_06_07_07_07_06_A0_F0_F0_F0_F0_E0_E0_E0_3B_7B_7B_79_3D_3F_1F_07_80_C0_C0_A0_60_60_60_C0), .INIT_1F(256'hC6_CE_DE_FE_FE_F6_E6_C6_FC_FC_FC_F8_F8_F0_C0_00_3F_3F_3F_1F_1F_0F_03_00_FC_C0_FE_E0_7F_80_F0_00), .INIT_20(256'h98_68_F0_E0_C0_00_01_02_1F_1F_0E_05_03_00_80_40_C0_C0_E0_F0_F8_3C_06_03_07_2F_07_13_00_00_00_00), .INIT_21(256'h10_30_E0_C0_00_00_00_00_0C_0F_07_03_10_08_00_00_17_37_37_17_17_F5_F6_F4_E8_E8_E8_E8_E8_AF_61_2F), .INIT_22(256'h00_FC_7E_1E_0C_01_05_05_3C_7E_E7_DB_DB_E7_7E_3C_38_7C_FE_FE_FE_FE_7C_38_BB_7E_26_A2_7A_1A_07_07), .INIT_23(256'h7E_FF_FF_FF_FF_FF_FF_7E_00_00_C0_30_98_E8_FC_FC_00_00_03_0E_1F_1F_3F_3F_00_70_F0_70_A0_40_F8_80), .INIT_24(256'h02_01_00_C0_E0_F0_68_98_40_80_00_03_05_0E_1F_1F_00_00_00_00_C0_E0_F0_E0_C0_70_3C_1F_0F_07_03_01), .INIT_25(256'hF8_FE_00_00_C0_E0_30_10_1F_7F_00_00_03_07_0F_0C_00_24_24_24_00_F4_F6_17_00_24_24_24_00_2F_6F_E8), .INIT_26(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_74_48_61_F5_B6_60_F8_84_1A_7C_BB_9F_4F_02_79_15), .INIT_27(256'hE0_58_AC_58_F0_20_00_00_07_1D_2A_55_6B_D4_A8_D9_00_00_00_00_00_00_00_00_A8_D8_AC_58_70_20_00_00), .INIT_28(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_C0_C0_00_00_00), .INIT_29(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_30(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_31(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_32(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_33(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_34(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_35(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_36(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_37(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_38(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_39(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00)) aRAM ( .DOB(adout), // Port B 8-bit Data Output .ADDRA(aaddra), // Port A 11-bit Address Input .ADDRB(aaddrb), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(adin), // Port A 8-bit Data Input .DIPA(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(awe), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); wire bwe; wire [10:0]baddra; wire [7:0]bdin; wire [10:0]baddrb; wire [7:0]bdout; assign bwe = (id >= 16'h9800 && id <= 16'h9FFF) ? write : 1'b0; assign baddra = id - 16'h9800; assign bdin = data; RAMB16_S9_S9 #( .INIT_00(256'hF8_70_00_00_10_20_00_00_00_20_31_32_19_00_00_00_C0_00_00_20_40_00_00_00_41_62_64_32_00_00_00_00), .INIT_01(256'h00_70_58_D8_EA_E2_F1_F0_E0_00_00_00_20_40_00_00_01_40_62_64_32_00_00_00_3C_42_A1_95_8D_9D_42_3C), .INIT_02(256'h00_60_09_8E_0A_04_01_00_0E_80_D0_F0_70_20_00_00_70_01_0B_0F_0E_04_01_00_00_00_00_00_00_00_00_00), .INIT_03(256'h10_30_60_60_40_00_00_00_C0_84_8C_4C_98_00_00_00_0F_07_00_00_08_04_00_00_04_00_50_F0_30_20_00_04), .INIT_04(256'hE0_E0_E0_C2_C3_C7_FC_FE_00_03_37_73_F1_F1_94_61_20_30_30_60_F8_F0_E0_E0_3A_54_54_32_03_0B_07_03), .INIT_05(256'h00_00_00_00_7C_FC_F8_78_E0_E0_F0_F8_FC_F0_EC_F8_03_43_6D_7E_2F_07_0B_07_91_00_00_18_00_24_00_18), .INIT_06(256'h01_08_40_00_60_64_D8_08_E7_F3_90_0A_86_4E_5F_3F_3D_FB_09_50_64_72_FA_FC_08_10_24_15_1A_06_00_00), .INIT_07(256'h00_00_00_00_00_08_08_10_80_F0_20_00_63_CF_FF_EF_07_07_0F_0F_1F_1D_1F_1F_00_80_08_00_06_48_03_10), .INIT_08(256'h2C_70_60_E0_E0_F0_F0_F0_02_0C_00_0C_38_77_6F_1F_40_E0_E0_E0_F0_F0_F0_E0_00_00_00_00_00_00_01_01), .INIT_09(256'h00_00_00_40_40_20_00_00_0C_36_36_77_E0_F0_F0_F0_00_0E_0E_07_07_03_01_01_00_00_00_00_10_91_F7_B5), .INIT_0A(256'h00_00_08_10_00_00_08_20_08_30_30_30_70_60_E0_E1_10_0C_0C_0C_0E_12_29_5F_00_00_00_26_26_00_00_3F), .INIT_0B(256'h00_00_00_00_00_00_00_00_70_30_20_70_F0_E0_C0_80_06_07_07_07_07_0F_0F_0F_00_00_10_06_00_00_00_00), .INIT_0C(256'h00_00_00_00_01_00_0E_0E_00_00_00_00_00_00_00_00_04_08_10_06_0E_3C_7C_F0_00_00_10_28_04_28_10_00), .INIT_0D(256'h00_00_00_24_14_18_00_00_00_00_00_00_00_00_00_00_00_01_06_00_03_07_0E_0C_00_00_00_00_00_C0_00_00), .INIT_0E(256'h00_02_02_04_01_03_07_06_00_00_00_66_66_00_00_00_00_00_08_70_10_38_38_38_00_00_00_66_66_00_00_FF), .INIT_0F(256'h01_00_25_21_20_11_00_00_E0_00_24_80_00_40_00_00_03_93_17_EE_50_4A_00_40_00_02_0C_00_04_3C_78_30), .INIT_10(256'hC4_DA_BA_7C_F0_E0_D0_E0_07_07_07_07_1F_3F_3F_1F_98_04_3C_88_60_D0_E0_C0_07_0F_0F_07_1C_0F_07_07), .INIT_11(256'h03_02_02_01_F1_E9_C5_83_00_00_00_00_07_0F_0F_07_00_C0_F8_3C_FC_F8_80_80_07_07_1F_7E_FF_FF_27_7F), .INIT_12(256'h00_00_00_00_E0_F0_F0_E0_C0_E0_E0_C0_DC_FF_FF_F3_07_07_0F_1F_1F_1F_1F_0F_00_00_18_3C_DC_F0_FC_F0), .INIT_13(256'h00_11_1F_17_11_11_00_00_30_25_52_38_91_68_C8_E0_00_08_04_08_1C_38_38_38_00_00_18_3C_3C_18_00_00), .INIT_14(256'hF8_F0_E0_00_00_00_00_00_27_0F_0B_00_10_08_00_00_BC_38_F8_F0_C0_00_00_00_0F_07_03_01_03_00_00_00), .INIT_15(256'h00_1A_04_16_14_0A_19_00_40_20_00_00_00_00_00_00_7E_FF_FF_FF_FF_FF_FE_F8_1F_9E_5F_1F_0F_07_03_00), .INIT_16(256'h00_00_00_00_00_00_00_00_00_0E_06_0E_1A_30_20_00_00_17_14_54_57_B4_17_00_00_49_49_49_49_49_E9_00), .INIT_17(256'hE0_40_C0_00_F0_C0_40_E0_01_00_10_44_45_10_00_01_00_00_00_00_00_00_00_00_24_42_99_3C_3C_99_42_24), .INIT_18(256'hFE_FE_FE_FE_FC_7C_FC_F8_1F_0B_07_1B_3D_7E_7F_6F_00_90_78_F8_FC_FC_7C_FC_00_0B_1F_07_23_36_1E_0F), .INIT_19(256'h3C_7E_C3_DF_DF_DF_7E_3C_00_00_00_00_00_00_00_80_00_00_80_C8_9C_AE_BE_FE_00_00_0D_07_03_07_07_1F), .INIT_1A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_80_00_00_78_78_78_78_78_30_00_00_00_00_00_00_00_20_10_00), .INIT_1B(256'h00_FE_FE_FE_FE_FE_FE_FE_00_FE_82_82_82_82_82_FE_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_1C(256'h20_40_80_00_D8_FC_FE_FE_00_00_00_00_01_07_1F_3F_00_20_00_0C_0C_00_20_00_00_20_00_00_00_00_20_00), .INIT_1D(256'h07_07_0F_0F_0F_1F_1F_1F_00_FE_C0_C0_FC_C0_C0_FE_40_30_50_22_38_1E_04_00_19_04_16_05_0A_00_00_00), .INIT_1E(256'h01_01_01_00_00_00_00_00_C0_C0_C0_A0_00_80_E0_E0_1F_0F_2F_27_03_00_01_01_80_C0_C0_C0_80_80_80_80), .INIT_1F(256'h00_C6_CE_DE_FE_F6_E6_C6_FC_FC_FC_F8_F8_70_C0_00_2F_2F_33_11_19_0E_03_00_FC_E0_FE_F0_7F_00_00_00), .INIT_20(256'h00_00_08_04_02_11_09_06_08_0C_14_21_44_88_90_60_9C_9C_C8_E0_30_C8_04_02_7B_77_3B_3C_1F_07_00_00), .INIT_21(256'hC2_02_02_02_02_04_04_F8_40_40_42_40_50_28_20_1F_E7_07_C7_07_E7_07_06_04_E7_E4_E7_E4_E7_E0_6E_20), .INIT_22(256'hFC_02_00_00_00_01_01_01_00_00_00_18_18_00_00_00_38_7C_FE_FE_FE_BE_5C_38_00_00_00_00_08_00_00_00), .INIT_23(256'h24_66_E7_18_18_E7_66_24_00_00_C0_30_98_E8_FC_FC_00_00_03_0E_1F_1F_3F_3F_F0_80_00_00_80_40_F8_C0), .INIT_24(256'h06_09_11_22_04_08_00_00_60_90_88_44_20_00_00_00_00_C0_F0_38_18_CC_E4_C4_40_23_10_2C_37_7B_7D_7F), .INIT_25(256'hF8_FE_82_02_02_02_02_C2_1F_7F_41_40_40_42_40_40_FE_00_24_24_00_04_06_07_7F_00_24_24_00_20_60_E0), .INIT_26(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_80_00_00_00_00_00_20_00_08_02_00_00), .INIT_27(256'h40_08_04_08_50_20_80_C0_05_08_00_00_41_80_01_8A_C0_80_00_00_00_00_00_00_03_89_04_08_50_20_00_00), .INIT_28(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_C0_C0_00_00_00), .INIT_29(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_2F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_30(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_31(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_32(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_33(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_34(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_35(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_36(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_37(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_38(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_39(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3A(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3B(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3C(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3D(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3E(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00), .INIT_3F(256'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00)) bRAM ( .DOB(bdout), // Port B 8-bit Data Output .ADDRA(baddra), // Port A 11-bit Address Input .ADDRB(baddrb), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(bdin), // Port A 8-bit Data Input .DIPA(1'b0), // 1-bit Parity .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(bwe), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); //////////////////////////////////////////Display Buffer/////////////////////////////////////////// assign nxt256pix = next256pixel[9:1]; assign cur256line = currline ? ((currline + 1'b1) / 2) : 8'h00; assign nxt256line = (vcount > 31 && vcount < 512) ? cur256line + 1'b1 : 8'h00; //No color out if not in drawing area. assign lbrstb = (cur256line && nxt256pix) ? 1'b0 : 1'b1; //Select between odd line buffer and even line buffer assign lbaddrb[8] = (cur256line % 2 == 1) ? 1'b0 : 1'b1; assign lbaddrb[7:0] = nxt256pix - 1'b1; //////////////////////////////////////////Buffer Fill FSM////////////////////////////////////////// wire leavewait; wire [1:0]bgatbits; wire bgptabit; wire bgptbbit; reg [4:0]State = 3'b000; reg [4:0]NextState = 3'b000; reg [8:0]pix256draw = 9'h000; //Sprite registers and wires. wire spriteinrange; wire [7:0]spritex; wire [7:0]spritey; wire [7:0]spriteptrn; wire [1:0]upal; wire hmirror; wire vmirror; wire back; wire [2:0]invert; wire [2:0]normal; wire [10:0]address; reg spbita = 1'b0; reg spbitb = 1'b0; reg [7:0]bfaddr = 8'h00; reg bs = 1'b0; reg [7:0]pix = 8'h00; always @(State, leavewait, pix256draw, currsprite, spriteinrange, back) begin case(State) WAIT : NextState = leavewait ? NTAT : WAIT; NTAT : NextState = PTAB; PTAB : NextState = BUFF; BUFF : NextState = (pix256draw && (pix256draw < 256)) ? NTAT : NEXT; NEXT : NextState = SPRAM; SPRAM: NextState = spriteinrange ? SAB : (currsprite == 256 && !spriteinrange) ? WAIT : NEXT; SAB : NextState = back ? WRIT0 : BUFF0; WRIT0: NextState = WRIT1; WRIT1: NextState = WRIT2; WRIT2: NextState = WRIT3; WRIT3: NextState = WRIT4; WRIT4: NextState = WRIT5; WRIT5: NextState = WRIT6; WRIT6: NextState = WRIT7; WRIT7: NextState = BUFF0; BUFF0: NextState = BUFF1; BUFF1: NextState = BUFF2; BUFF2: NextState = BUFF3; BUFF3: NextState = BUFF4; BUFF4: NextState = BUFF5; BUFF5: NextState = BUFF6; BUFF6: NextState = BUFF7; BUFF7: NextState = (currsprite == 256) ? WAIT : NEXT; default : NextState = WAIT; endcase end always @(posedge clk) begin if(!nxt256line) State <= WAIT; else State <= NextState; if(NextState == WAIT) begin lbwe = 1'b0; pix256draw <= 9'h000; currsprite = 9'h000; bfaddr = 8'h00; bs <= 1'b0; end if(NextState == NTAT) begin lbwe = 1'b0; pix256draw <= pix256draw + 1; end if(NextState == PTAB) begin lbwe = 1'b0; end if(NextState == BUFF) begin lbwe = 1'b1; end if(NextState == NEXT) begin lbwe = 1'b0; pix <= 8'h00; pix256draw <= 9'h000; currsprite = currsprite + 1; bfaddr = 8'h00; bs <= 1'b1; end if(NextState == SAB) begin bfaddr = hmirror ? spritex + 7 : spritex; end if(NextState == WRIT0) begin bfaddr = hmirror ? spritex + 6 : spritex + 1; end if(NextState == WRIT1) begin bfaddr = hmirror ? spritex + 5 : spritex + 2; if(lbcheck) pix[0] <= 1'b1; end if(NextState == WRIT2) begin bfaddr = hmirror ? spritex + 4 : spritex + 3; if(lbcheck) pix[1] <= 1'b1; end if(NextState == WRIT3) begin bfaddr = hmirror ? spritex + 3 : spritex + 4; if(lbcheck) pix[2] <= 1'b1; end if(NextState == WRIT4) begin bfaddr = hmirror ? spritex + 2 : spritex + 5; if(lbcheck) pix[3] <= 1'b1; end if(NextState == WRIT5) begin bfaddr = hmirror ? spritex + 1 : spritex + 6; if(lbcheck) pix[4] <= 1'b1; end if(NextState == WRIT6) begin bfaddr = hmirror ? spritex : spritex + 7; if(lbcheck) pix[5] <= 1'b1; end if(NextState == WRIT7) begin if(lbcheck) pix[6] <= 1'b1; end if(NextState == BUFF0) begin if((!adout[7] && !bdout[7]) || (back && pix[0])) lbwe = 1'b0; else lbwe = 1'b1; if(lbcheck) pix[7] <= 1'b1; bfaddr = hmirror ? spritex + 7 : spritex; spbita = adout[7]; spbitb = bdout[7]; end if(NextState == BUFF1) begin if((!adout[6] && !bdout[6]) || (back && pix[1])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 6 : spritex + 1; spbita = adout[6]; spbitb = bdout[6]; end if(NextState == BUFF2) begin if((!adout[5] && !bdout[5]) || (back && pix[2])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 5 : spritex + 2; spbita = adout[5]; spbitb = bdout[5]; end if(NextState == BUFF3) begin if((!adout[4] && !bdout[4]) || (back && pix[3])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 4 : spritex + 3; spbita = adout[4]; spbitb = bdout[4]; end if(NextState == BUFF4) begin if((!adout[3] && !bdout[3]) || (back && pix[4])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 3 : spritex + 4; spbita = adout[3]; spbitb = bdout[3]; end if(NextState == BUFF5) begin if((!adout[2] && !bdout[2]) || (back && pix[5])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 2 : spritex + 5; spbita = adout[2]; spbitb = bdout[2]; end if(NextState == BUFF6) begin if((!adout[1] && !bdout[1]) || (back && pix[6])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex + 1 : spritex + 6; spbita = adout[1]; spbitb = bdout[1]; end if(NextState == BUFF7) begin if((!adout[0] && !bdout[0]) || (back && pix[7])) lbwe = 1'b0; else lbwe = 1'b1; bfaddr = hmirror ? spritex : spritex + 7; spbita = adout[0]; spbitb = bdout[0]; end end //Determine when it is time to go from WAIT to NTAT. assign leavewait = (nxt256line && (vcount % 2 == 1'b0) && hcount < 10'h002) ? 1'b1 : 1'b0; //Name table address. assign ntaddra = nxt256line ? (32 * ((nxt256line - 1) / 8) + ((pix256draw - 1) / 8)) : 10'h000; //Attribute table address. assign bgataddra = nxt256line ? (8 * ((nxt256line - 1) / 8) + ((pix256draw - 1) / 32)) : 10'h000; //Pattern table addresses. assign bgptaaddra = pix256draw ? (8 * ntdout + (nxt256line - 1) % 8) :10'h000; assign bgptbaddra = pix256draw ? (8 * ntdout + (nxt256line - 1) % 8) :10'h000; //Attribute table bits for palette MUX. assign bgatbits = (ntaddra % 4 == 2'b00) ? bgatdout[7:6] : (ntaddra % 4 == 2'b01) ? bgatdout[5:4] : (ntaddra % 4 == 2'b10) ? bgatdout[3:2] : bgatdout[1:0]; //Pattern table B bit for palette MUX. assign bgptbbit = bgptbdout[~(pix256draw - 1) % 8]; //Pattern table A bit for palette MUX. assign bgptabit = bgptadout[~(pix256draw - 1) % 8]; //Break down the sprite data into its separate parts. assign spritex = spdout[31:24]; assign spritey = spdout[7:0]; assign spriteptrn = spdout[15:8]; assign spriteinrange = (currsprite && (nxt256line - 1'b1 >= spritey) && nxt256line - 1'b1 - spritey < 8) ? 1'b1 : 1'b0; assign upal = spdout[17:16]; assign hmirror = spdout[22]; assign vmirror = spdout[23]; assign back = spdout[21]; //Get sprite graphic info with or without vertical mirroring. assign invert = ~(nxt256line - 1'b1 - spritey); assign normal = (nxt256line - 1'b1 - spritey); assign address = spriteptrn * 8; assign aaddrb = address + (vmirror ? invert : normal); assign baddrb = aaddrb; //Palette MUX assign lbdin = ({bs, bgatbits, bgptbbit, bgptabit} == 5'h00) ? bgpal0 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h01) ? bgpal1 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h02) ? bgpal2 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h03) ? bgpal3 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h04) ? bgpal4 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h05) ? bgpal5 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h06) ? bgpal6 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h07) ? bgpal7 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h08) ? bgpal8 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h09) ? bgpal9 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0A) ? bgpal10 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0B) ? bgpal11 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0C) ? bgpal12 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0D) ? bgpal13 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0E) ? bgpal14 : ({bs, bgatbits, bgptbbit, bgptabit} == 5'h0F) ? bgpal15 : ({bs, upal , spbitb , spbita } == 5'h10) ? sppal0 : ({bs, upal , spbitb , spbita } == 5'h11) ? sppal1 : ({bs, upal , spbitb , spbita } == 5'h12) ? sppal2 : ({bs, upal , spbitb , spbita } == 5'h13) ? sppal3 : ({bs, upal , spbitb , spbita } == 5'h14) ? sppal4 : ({bs, upal , spbitb , spbita } == 5'h15) ? sppal5 : ({bs, upal , spbitb , spbita } == 5'h16) ? sppal6 : ({bs, upal , spbitb , spbita } == 5'h17) ? sppal7 : ({bs, upal , spbitb , spbita } == 5'h18) ? sppal8 : ({bs, upal , spbitb , spbita } == 5'h19) ? sppal9 : ({bs, upal , spbitb , spbita } == 5'h1A) ? sppal10 : ({bs, upal , spbitb , spbita } == 5'h1B) ? sppal11 : ({bs, upal , spbitb , spbita } == 5'h1C) ? sppal12 : ({bs, upal , spbitb , spbita } == 5'h1D) ? sppal13 : ({bs, upal , spbitb , spbita } == 5'h1E) ? sppal14 : sppal15; //Write to odd or even line buffer. assign lbaddra[8] = ~lbaddrb[8]; //Line buffer address. assign lbaddra[7:0] = bs ? bfaddr : pix256draw - 1'b1; //Determine final pixel color. assign colorout = (hcount < 112 || hcount > 623 || !currline) ? 8'h00 : !lbdout ? basecolor : lbdout; ////////////////////////////////////////////Base Timing//////////////////////////////////////////// always @(posedge clk25MHz) begin //Horizontal timing. hcount <= hcount + 1'b1; if(hcount == 704) hsync <= 1'b0; if(hcount == 800) begin hcount <= 10'h001; hsync <= 1'b1; vcount <= vcount + 1'b1; end //Vertical timing. if(vcount == 523) vsync <= 1'b0; if(vcount == 525) begin vcount <= 10'h001; vsync <= 1'b1; end //Visible pixel counters. if(hcount >= 47 && hcount <= 686) nextpixel <= nextpixel + 1; else nextpixel <= 0; if(hcount >= 46 && hcount <= 685) nextpixel2 <= nextpixel2 + 1; else nextpixel2 <= 0; //Visible line counters. if(vcount >= 33 && hcount == 800) currline <= currline + 1; if(vcount >= 513 && hcount == 800) currline <= 0; //256 resolution pixel counter. if(hcount >= 109 && hcount <= 621) next256pixel <= next256pixel + 1; else next256pixel <= 1'b0; //Vertical blank. if(vcount == 514) vblank <= 1'b1; else vblank <= 1'b0; //Draw linebuffer data to screen. vga <= colorout; end endmodule
uart.v
`timescale 1ns / 1ps module uart( input clk, input reset, input [15:0] id, input [15:0] din, input write, input rx, output reg tx = 1'b1, output [7:0]dout, output reg [11:0]rxcount = 12'h000, output reg [11:0]txcount = 12'h000 ); parameter initbaud = 16'd5244; //Default 9600 baud. parameter setBaud = 16'h0200; parameter txStoreByte = 16'h0201; parameter txFlush = 16'h0202; parameter txPurge = 16'h0203; parameter rxNextByte = 16'h0204; parameter rxPurge = 16'h0205; parameter TXREADY = 4'h0; parameter TXSYNC = 4'h1; parameter TXSTART = 4'h2; parameter TXB0 = 4'h3; parameter TXB1 = 4'h4; parameter TXB2 = 4'h5; parameter TXB3 = 4'h6; parameter TXB4 = 4'h7; parameter TXB5 = 4'h8; parameter TXB6 = 4'h9; parameter TXB7 = 4'hA; parameter TXSTOP = 4'hB; parameter RXREADY = 4'h0; parameter RXSTART = 4'h1; parameter RXB0 = 4'h2; parameter RXB1 = 4'h3; parameter RXB2 = 4'h4; parameter RXB3 = 4'h5; parameter RXB4 = 4'h6; parameter RXB5 = 4'h7; parameter RXB6 = 4'h8; parameter RXB7 = 4'h9; parameter RXSTOP = 4'hA; parameter RXSTORE = 4'hB; reg [3:0]txstate = TXREADY; reg [3:0]txnextstate = TXREADY; reg [3:0]rxstate = RXREADY; reg [3:0]rxnextstate = RXREADY; //baudreg calculation is as follows: //Clock frequency / desired baud rate / 2. reg [15:0]txbaudreg = initbaud; reg [17:0]txcountreg = 18'h00000; //Counts system clock cycles to generate baud clock. reg baudclock = 1'b0; //Used to time data out. reg [15:0]rxbaudcntr = 16'h0000; reg [10:0]txstartreg = 11'h000; reg [10:0]txendreg = 11'h000; //Tx buffer regs. reg [10:0]rxstartreg = 11'h000; reg [10:0]rxendreg = 11'h000; //Rx buffer regs. reg baudthis = 1'b0; reg baudlast = 1'b0; reg baudpostrans = 1'b0; reg rxthis = 1'b0; reg rxlast = 1'b0; reg rxnegtrans = 1'b0; reg nbwait = 1'b0; //Wait while user retrieves received byte. reg [7:0]txreg = 8'h00; reg [7:0]rxreg = 8'h00; wire txwe; wire rxwe; wire [7:0]txdout; RAMB16_S9_S9 #( .INIT_A(9'h000), // Value of output RAM registers on Port A at startup .INIT_B(9'h000), // Value of output RAM registers on Port B at startup .SRVAL_A(9'h000), // Port A output value upon SSR assertion .SRVAL_B(9'h000), // Port B output value upon SSR assertion .WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL")) // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL" TXRAM ( .DOA(txdout), // Port A 8-bit Data Output .DOB(), // Port B 16-bit Data Output .ADDRA(txstartreg), // Port A 11-bit Address Input .ADDRB(txendreg), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(), // Port A 8-bit Data Input .DIB(din[7:0]), // Port-B 8-bit Data Input .DIPA(1'b0), // Port A 1-bit parity Input .DIPB(1'b0), // Port B 1-bit parity Input .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(1'b0), // Port A Write Enable Input .WEB(txwe) // Port B Write Enable Input ); RAMB16_S9_S9 #( .INIT_A(9'h000), // Value of output RAM registers on Port A at startup .INIT_B(9'h000), // Value of output RAM registers on Port B at startup .SRVAL_A(9'h000), // Port A output value upon SSR assertion .SRVAL_B(9'h000), // Port B output value upon SSR assertion .WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL")) // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL" RXRAM ( .DOA(), // Port A 8-bit Data Output .DOB(dout), // Port B 16-bit Data Output .ADDRA(rxendreg), // Port A 11-bit Address Input .ADDRB(rxstartreg), // Port B 11-bit Address Input .CLKA(clk), // Port A Clock .CLKB(clk), // Port B Clock .DIA(rxreg), // Port A 8-bit Data Input .DIB(), // Port-B 8-bit Data Input .DIPA(1'b0), // Port A 1-bit parity Input .DIPB(1'b0), // Port B 1-bit parity Input .ENA(1'b1), // Port A RAM Enable Input .ENB(1'b1), // Port B RAM Enable Input .SSRA(1'b0), // Port A Synchronous Set/Reset Input .SSRB(1'b0), // Port B Synchronous Set/Reset Input .WEA(rxwe), // Port A Write Enable Input .WEB(1'b0) // Port B Write Enable Input ); assign txwe = (write && id == txStoreByte) ? 1'b1 : 1'b0; assign rxwe = (rxstate == RXSTOP) ? 1'b1 : 1'b0; always @(posedge clk) begin txcountreg <= txcountreg + 1'b1; txstate <= txnextstate; rxstate <= rxnextstate; //Keep track of baud clock edges. baudthis <= baudclock; baudlast <= baudthis; //Keep track of rx edges rxthis <= rx; rxlast <= rxthis; //Keep track of rx negative edge. if(rxlast && !rxthis) rxnegtrans <= 1'b1; else rxnegtrans <= 1'b0; //Keep track of baud clock positive edge. if(!baudlast && baudthis) baudpostrans <= 1'b1; else baudpostrans <= 1'b0; //Reset all registers to defaults. if(reset) begin txcountreg <= 18'h00000; rxstartreg <= 11'h000; txstartreg <= 11'h000; txbaudreg <= initbaud; baudclock <= 1'b0; txendreg <= 11'h000; rxendreg <= 11'h000; txstate <= TXREADY; rxstate <= RXREADY; txcount <= 10'h000; rxcount <= 10'h000; txreg <= 8'h00; rxreg <= 8'h00; tx <= 1'b1; end if(txstate == TXREADY || txstate == TXSYNC) tx <= 1'b1; if(txcountreg == txbaudreg) begin baudclock <= ~baudclock; txcountreg <= 18'h00000; end if(id == setBaud && write) txbaudreg <= din; if(id == txStoreByte && write) begin txendreg <= txendreg + 1; if(txcount < 2048) //Still room in buffer. txcount <= txcount + 1; else //No room in buffer. Overwrite oldest byte. txstartreg <= txstartreg + 1; end if(nbwait) begin rxstartreg <= rxstartreg + 1; rxcount <= rxcount - 1; nbwait <= nbwait + 1; end if(id == rxNextByte && write && rxcount) begin nbwait <= 1'b1; end if(id == txPurge && write) begin txendreg <= 0; txstartreg <= 0; txcount <= 0; end if(id == rxPurge && write) begin rxendreg <= 0; rxstartreg <= 0; rxcount <= 0; end if(txstate == TXSTART) begin txreg <= txdout; tx <= 1'b0; end if(txstate == TXB0) tx <= txreg[0]; if(txstate == TXB1) tx <= txreg[1]; if(txstate == TXB2) tx <= txreg[2]; if(txstate == TXB3) tx <= txreg[3]; if(txstate == TXB4) tx <= txreg[4]; if(txstate == TXB5) tx <= txreg[5]; if(txstate == TXB6) tx <= txreg[6]; if(txstate == TXB7) tx <= txreg[7]; if(txstate == TXSTOP) begin tx <= 1'b1; end if(txnextstate == TXSTOP && baudpostrans) begin txcount <= txcount - 1; txstartreg <= txstartreg + 1; end if(rxbaudcntr) rxbaudcntr <= rxbaudcntr - 1; if(rxstate == RXREADY && rxnextstate == RXSTART) rxbaudcntr <= txbaudreg * 2 + txbaudreg; if(rxstate == RXSTART && rxnextstate == RXB0) begin rxreg[0] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB0 && rxnextstate == RXB1) begin rxreg[1] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB1 && rxnextstate == RXB2) begin rxreg[2] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB2 && rxnextstate == RXB3) begin rxreg[3] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB3 && rxnextstate == RXB4) begin rxreg[4] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB4 && rxnextstate == RXB5) begin rxreg[5] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB5 && rxnextstate == RXB6) begin rxreg[6] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXB6 && rxnextstate == RXB7) begin rxreg[7] <= rx; rxbaudcntr <= txbaudreg * 2; end if(rxstate == RXSTOP && rxnextstate == RXSTORE) begin rxendreg <= rxendreg + 1; if(rxcount < 1024) rxcount <= rxcount + 1; end end always @(*) begin //Transmit finite state machine. case(txstate) TXREADY : txnextstate = reset ? TXREADY : (id == txFlush && write && txcount) ? TXSYNC : TXREADY; TXSYNC : txnextstate = baudpostrans ? TXSTART : TXSYNC; TXSTART : txnextstate = baudpostrans ? TXB0 : TXSTART; TXB0 : txnextstate = baudpostrans ? TXB1 : TXB0; TXB1 : txnextstate = baudpostrans ? TXB2 : TXB1; TXB2 : txnextstate = baudpostrans ? TXB3 : TXB2; TXB3 : txnextstate = baudpostrans ? TXB4 : TXB3; TXB4 : txnextstate = baudpostrans ? TXB5 : TXB4; TXB5 : txnextstate = baudpostrans ? TXB6 : TXB5; TXB6 : txnextstate = baudpostrans ? TXB7 : TXB6; TXB7 : txnextstate = baudpostrans ? TXSTOP : TXB7; TXSTOP : txnextstate = (baudpostrans && txcount) ? TXSTART : baudpostrans ? TXREADY : TXSTOP; default : txnextstate = TXREADY; endcase end always @(*) begin //Receive finite state machine. case(rxstate) RXREADY : rxnextstate = rxnegtrans ? RXSTART : RXREADY; RXSTART : rxnextstate = rxbaudcntr ? RXSTART : RXB0; RXB0 : rxnextstate = rxbaudcntr ? RXB0 : RXB1; RXB1 : rxnextstate = rxbaudcntr ? RXB1 : RXB2; RXB2 : rxnextstate = rxbaudcntr ? RXB2 : RXB3; RXB3 : rxnextstate = rxbaudcntr ? RXB3 : RXB4; RXB4 : rxnextstate = rxbaudcntr ? RXB4 : RXB5; RXB5 : rxnextstate = rxbaudcntr ? RXB5 : RXB6; RXB6 : rxnextstate = rxbaudcntr ? RXB6 : RXB7; RXB7 : rxnextstate = rxbaudcntr ? RXB7 : RXSTOP; RXSTOP : rxnextstate = RXSTORE; RXSTORE : rxnextstate = RXREADY; default : rxnextstate = RXREADY; endcase end endmodule
ROMcontroller.v
`timescale 1ns / 1ps module ROMcontroller( input [15:0]id, input [15:0]ain, input clk, output reg [10:0]aout = 11'h000 ); always @(posedge clk) begin if(id == 16'h0000) aout <= {3'b000, ain[7:0]}; if(id == 16'h0001) aout <= {3'b001, ain[7:0]}; if(id == 16'h0002) aout <= {3'b010, ain[7:0]}; if(id == 16'h0003) aout <= {3'b011, ain[7:0]}; if(id == 16'h0004) aout <= {3'b100, ain[7:0]}; if(id == 16'h0005) aout <= {3'b101, ain[7:0]}; if(id == 16'h0006) aout <= {3'b110, ain[7:0]}; if(id == 16'h0007) aout <= {3'b111, ain[7:0]}; end endmodule
MControl.v
`timescale 1ns / 1ps module MControl( input clk, input reset, input serialdata, output nenable, output reg sclk = 1'b1, output reg [11:0]micdata = 12'h000 ); parameter WAIT = 2'b00; parameter GETDATA = 2'b01; parameter PUTDATA = 2'b10; parameter QUIET = 2'b11; reg [1:0]clockdivider = 2'b00; reg [1:0]state = WAIT; reg [1:0]nextstate = WAIT; reg [4:0]bitcounter = 5'h00; reg [11:0]datahold = 12'h000; nand nen(nenable, ~state[1], state[0]); always @(posedge clk) begin if(!reset) clockdivider <= clockdivider + 1'b1; else begin clockdivider <= 2'b00; sclk <= 1'b0; end if(clockdivider == 2'b01) sclk <= 1'b1; if(clockdivider == 2'b11) sclk <= 1'b0; end always @(posedge sclk) begin if(reset) state <= WAIT; else state <= nextstate; if(nextstate == GETDATA) begin bitcounter <= bitcounter + 1'b1; datahold <= {datahold[10:0], serialdata}; end if(nextstate == PUTDATA) begin datahold <= {datahold[10:0], serialdata}; bitcounter <= 5'h00; end if(nextstate == WAIT) micdata <= datahold; end always @(state, reset, bitcounter) begin case(state) WAIT : nextstate = (reset) ? WAIT : GETDATA; GETDATA : nextstate = (bitcounter == 5'h10) ? PUTDATA : GETDATA; PUTDATA : nextstate = WAIT; QUIET : nextstate = WAIT; endcase end endmodule
ClockControl.v
`timescale 1ns / 1ps //This module controls the timing of the clock and the time change //functions. It takes the 50 MHz system clock in as an input and the //1 KHz clock enable. It also takes the status of the buttons in so //it can set the clock time. The current time of the clock in BCD is //provided on the output. module ClockControl( input clock, input ce_1KHz, input [3:0]button, output [7:0]hour, output [7:0]min, output [7:0]sec, output blink ); reg ce_1Hz = 1'b0; reg [9:0]mscounter = 10'h000; reg [3:0]seclo = 4'h0; reg [3:0]sechi = 4'h0; reg [3:0]minlo = 4'h0; reg [3:0]minhi = 4'h0; reg [3:0]hourlo = 4'h1; reg [3:0]hourhi = 4'h0; assign hour = {hourhi, hourlo}; assign min = {minhi, minlo}; assign sec = {sechi, seclo}; assign blink = mscounter[9]; always @(posedge clock) begin //Reset 1 second clock enable pulse every clock cycle. ce_1Hz = 1'b0; if(ce_1KHz) mscounter = mscounter + 1; if(mscounter == 1000) begin mscounter = 0; ce_1Hz = 1'b1; //1 second clock enable pulse. seclo = seclo + 1; end if(seclo == 10) begin seclo = 0; sechi = sechi + 1; end if(sechi == 6) begin sechi = 0; minlo = minlo + 1; end if(minlo == 10) begin minlo = 0; minhi = minhi + 1; end if(minhi == 6) begin minhi = 0; hourlo = hourlo + 1; end if(hourlo == 10) begin hourlo = 0; hourhi = hourhi + 1; end if(hourhi == 1 && hourlo == 3) begin hourlo = 4'b0001; hourhi = 0; end //Button inputs used to set the clock time. //Increment the lower minute digit. if(button == 4'b0001 && ce_1Hz) minlo = minlo + 1; //Increment the upper minute digit. if(button == 4'b0010 && ce_1Hz) minhi = minhi + 1; //Increment the lower hour digit. if(button == 4'b0100 && ce_1Hz) hourlo = hourlo + 1; end endmodule
dataMUX.v
`timescale 1ns / 1ps module dataMUX( input [15:0]xpos, input [15:0]ypos, input [15:0]i2cdata, input [15:0]i2cstatus, input read, input blink, input [15:0]id, input [15:0]uartdata, input [11:0]txcount, input [11:0]rxcount, input [7:0]romdata, input [15:0]switches, input [7:0]sec, input [7:0]min, input [7:0]hour, input [15:0]micdata, output [15:0]dout ); assign dout = (id == 16'h0001 && read) ? i2cdata : (id == 16'h0002 && read) ? i2cstatus : (id == 16'h0003 && read) ? uartdata : (id == 16'h0004 && read) ? {4'h0, txcount} : (id == 16'h0005 && read) ? {4'h0, rxcount} : (id == 16'h0006 && read) ? xpos : (id == 16'h0007 && read) ? ypos : (id == 16'h0012 && read) ? {8'h00, romdata} : (id == 16'h0013 && read) ? switches : (id == 16'h0030 && read) ? {8'h00, sec} : (id == 16'h0031 && read) ? {8'h00, min} : (id == 16'h0032 && read) ? {8'h00, hour} : (id == 16'h0033 && read) ? {15'h0000, blink} : (id == 16'h0034 && read) ? micdata : 16'h0000; endmodule
div100k.v
`timescale 1ns / 1ps module div100k( input clock, output reg ce1k = 1'b0 ); reg [17:0]counter = 18'h00000; always @(posedge clock) begin counter <= counter + 1; ce1k <= 0; if(counter == 18'd100681) begin counter <= 18'd0; ce1k <= 1; end end endmodule
FF.v
`timescale 1ns / 1ps //IRQ flipflop module FF(input set, input reset, output reg sigout = 1'b0); always @(posedge set, posedge reset) begin if(reset) sigout <= 1'b0; else sigout <= 1'b1; end endmodule
ledio.v
`timescale 1ns / 1ps module ledio( input clk, input reset, input write, input [15:0]id, input [15:0]din, output reg [7:0]ledsout = 8'h00 ); always @(posedge clk) begin if(id == 16'h0020 && write) ledsout <= din[7:0]; if(reset) ledsout <= 8'h00; end endmodule
LEDIO2.v
`timescale 1ns / 1ps module LEDIO2( input clk, input reset, input write, input [15:0]id, input [15:0]din, output reg [7:0]ledsout = 8'h00 ); always @(posedge clk) begin if(id == 16'h0021 && write) ledsout <= din[7:0]; if(reset) ledsout <= 8'h00; end endmodule
seg7io.v
`timescale 1ns / 1ps module seg7io( input clk, input ce1k, input write, input reset, input [15:0]id, input [15:0]din, output reg [3:0]segselect = 4'h0, output reg [7:0]segs = 8'h00 ); reg [7:0]seg0 = 8'h00; reg [7:0]seg1 = 8'h00; reg [7:0]seg2 = 8'h00; reg [7:0]seg3 = 8'h00; always @(posedge ce1k) begin //Constantly cycle through the enable pins. if(segselect == 4'b1110) begin segselect <= 4'b0111; segs <= ~seg0; end else if(segselect == 4'b0111) begin segselect <= 4'b1011; segs <= ~seg1; end else if(segselect == 4'b1011) begin segselect <= 4'b1101; segs <= ~seg2; end else begin segselect <= 4'b1110; segs <= ~seg3; end end always @(posedge clk) begin if(id == 16'h0024 && write) seg0 <= din[7:0]; if(id == 16'h0025 && write) seg1 <= din[7:0]; if(id == 16'h0026 && write) seg2 <= din[7:0]; if(id == 16'h0027 && write) seg3 <= din[7:0]; if(reset) begin seg0 <= 8'h00; seg1 <= 8'h00; seg2 <= 8'h00; seg3 <= 8'h00; end end endmodule
timer.v
`timescale 1ns / 1ps module timer0( input clk, input cein, input write, input [15:0] id, input [15:0] din, input reset, output reg dout = 1'b0 ); reg [15:0] timerreg = 16'h0000; always @(posedge clk) begin dout <= 1'b0; //Load timer bits. if(id == 16'h0010 && write) timerreg <= din; //Decrement timer if not 0. if(cein && timerreg > 1'b1) timerreg <= timerreg - 1'b1; //One timer is about to expire, send output strobe. if(cein && timerreg == 1'b1) begin timerreg <= timerreg - 1'b1; dout <= 1'b1; end //Synchronous reset. if(reset) timerreg <= 16'h0000; end endmodule
timer1.v
`timescale 1ns / 1ps module timer1( input clk, input cein, input write, input [15:0] id, input [15:0] din, input reset, output reg dout = 1'b0 ); reg [15:0] timerreg = 16'h0000; always @(posedge clk) begin dout <= 1'b0; //Load timer bits. if(id == 16'h0011 && write) timerreg <= din; //Decrement timer if not 0. if(cein && timerreg > 1'b1) timerreg <= timerreg - 1'b1; //One timer is about to expire, send output strobe. if(cein && timerreg == 1'b1) begin timerreg <= timerreg - 1'b1; dout <= 1'b1; end //Synchronous reset. if(reset) timerreg <= 16'h0000; end endmodule
lookupROM.coe
memory_initialization_radix = 16; memory_initialization_vector = ; LEDTbl($ 000) 01,02,04,08,10,20,40,80,40,20,10,08,04,02,01,02, 04,08,10,20,40,80,40 , 20,10,08,04,02,01,02,04,08,10,20,40,80,40,20,10,08,04,02,01,02,04,08,10,20 , 40、80、40、20、10、08、04、02、01,FF,00,FF,00,FF,00,FF, 00,AA,55,AA,55,AA,55,AA,55 ,AA,55,AA,55,AA, 55、00、18、3C,7E,FF,00、18、3C,7E,FF,00、18、3C,7E,FF, 00、18、3C,7E ,FF,00、18、3C,7E,FF,00、18、3C,7E,FF ,00、00、00、00、00、00、00、00、00、00、00、00、00、00 ,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00 ,00、00、00、00、00、00、00、00、00、00、00、00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; TimeLoTbl($ 100) 50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50, 50,50,50,50,50,50,50 ,50,50,50,50,50,50,50,50,50, 50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50 , 50、50、50、50、50、50、50、50、50,FF,FF,FF,FF,FF,FF, FF,FF,FF,A0,A0,A0,A0,A0,A0,A0,A0 ,A0,A0,A0,A0,A0,A0,A0, A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0, A0,A0 ,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,A0,00,00,00, 00,00,00,00,00,00,00,00,00,00,00 ,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00 ,00、00、00、00、00、00、00、00、00、00、00、00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; Seg7IndexTbl($ 200) 1C,1E,1B,0E,10,05,05,1B,1E,22,1B,1A,18,16,如图1A所示,10, 23,23,23,00,01,02,03 , 04,05,06,07,08,09,23,23,23,1C,1E,1B,00,00,00,00,00,00,00,00,00,00,00,00,00 , 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00 ,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00 ,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00 ,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00 ,00、00、00、00、00、00、00、00、00、00、00、00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; Seg7Tbl($ 300) 3F,06,5B,4F,66,6D,7D,07,7F,67,77,5F,图7C,39,58,如图5E所示, 79,7B,71,6F,76,74,04 ,1E,38、37、54、5C,73、31、50、3E, 1C,6E,00、80、00、00、00、00、00、00、00、00、00、00、00、00 , 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00 ,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00 ,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00 ,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00 ,00、00、00、00、00、00、00、00、00、00、00、00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; ClockTbl($ 400) ; 0 4C,46,46,4D,56,51,50,47,56,41,40,47,5C,57,57,5D,; 1 FF,44,4D,FF,FF ,50,47,FF,FF,FF,47,FF,FF,FF,55,FF,; 2 44,46,46,4D,4E,61,4A,59,48,5B,60,5F,5C ,57,57,72,; 3 44,46,46,4D,62,61,4A,59,63,60,5A,49,54,57,57,5D,; 4 70,64,65,66 ,67,68,69,6A,6B,60,6C,6D,FF,FF,71,6E,; 5 73,46,46,45,74,61,61,4F,63,60,5A,49 ,54、57、57、5D,; 6 4C,46、46、45、56、42、61、4F,56、52、5A,49、5C,57、57、5D,; 7 44,46、46 ,4D,FF,FF,50、47,FF,FF,FF,47,FF,FF,FF,55,; 8 4C,46、46、4D,58、4B,4A,59、48、5B,5A ,49、5C,57、57、5D, ; 9 4C,46、46、4D,58、4B,43、47、5E,60、53、47、54、57、57、5D 、 ;空白 FF,FF,FF,FF,FF,FF,FF, FF,FF,FF,FF,FF,FF,FF,FF,FF, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, ; MessageTbl($ 500) ;活动演示 -0A,0C,1D,12、1F,0E,FF,0D,0E,16、18、17、1C,1D,1B,0A, 1D,12、18、17C ,3F, ;($ 516) ;平时时钟 1D,12,15,0E ,0D,FF,0C,15,18,0C ,14, ;($ 521) ; SPRITE AUDIO 1C,19,1B ,12,1 ,D ,0E ,FF,0A,1E,0D, 12,18 ,;($ 52D) ;基色 0B,0A,1C,0E,FF,0C,18,15,18,1B , ;($ 537) ;弹跳 0B, 18,1E,17,0C,12,17,10,FF,1C,19,1B,12,1D,0E,1C, ;($ 547) ;属性表 0A,1D,1D,1B,12,0B,1E ,1D,0E,FF,1D,0A,0B,15,0E, ;($ 556) ; SPRITE PRIORITY 1C,19,1B ,12,1D,0E,FF,19,1B,12,18,1B,12, 1D,22, ;($ 565) ;调色板更改19,0A ,15,0E ,1D,1D,0E,FF,0C,11,0A ,17,10,0E , ;($ 573) ; SPRITE MIRRORING 1C,19,1B ,12, 1D,0E,FF,16,12,1B,1B,18,1B,12,17,10 ;($ 583) 00,00,00,00,00,00,00,00,00,00,00,00 ,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00 ,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00 ,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00 ,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00 ,00、00、00、00、00、00、00、00、00、00、00、00、00, ; PaletteTbl($ 600)00、38、20、18、00、3F,24、1B,00、52 ,A4,FF,00、07、04、03、00、26、3F,02、00 ,C4,C2 ,82、00、60,A0、20、00、0B,19、5D ,00、00、00、00、00、00、00、00、00、00、00、00、00、00、00、00 , 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; SamusTbl($ 640)D0,00,D0,01,D8,10,D8,11,E0,20,E0,21 ,E0,FF,E8,FF, E8,31,E8,FF,FF,FF,FF ,FF,D0、02,D0、03,D8、12,D8、13,E0、22,E0、23, E0,FF,E8、32,E8、33,E8、34,FF,FF,FF,FF , D0、00,D0、01,D8、10,D8、11,E0、20, E0、21,E0,FF,E8,FF,E8、31,E8,FF,FF,FF,FF,FF,D0 ,05,D0、06,D8、15,D8、16,E0、25, E0、26,E0、27,E8、35,E8、36,E8,FF,FF,FF,FF,FF, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00, 00,00,00,00,00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, ; SpriteTbl($ 700) C0,9C,01,28,C0,9D,01,30,C8,9E,01,28,C8,9F,01,30, C0,9F,C1,78,C0,9E,C1 ,80,C8、9D,C1、78,C8、9C, C1、80,C0、9C,01,C8,C0、9D,01,D0,C8、9E,01,C8,C8、9F,01,D0 , FF,9F,C1,C8,FF,9E,C1,D0,FF,9D,C1,C8,FF,9C,C1,D0, C0、9E,81、28,C0、9F,81、30,C8 ,9C,81、28,C8、9D, 81、30,C0、9D,41、78,C0、9C,41、80,C8、9F,41、78,C8、9E, 41、80,C0、9E ,81,C8,C0、9F,81,D0,C8、9C,81,C8,C8、9D,81,D0, FF,9D,41,C8,FF,9C,41,D0,FF,9F,41 ,C8,FF,9E,41,D0, C0、9F,C1、28,C0、9E,C1、30,C8、9D,C1、28, C8、9C,C1、30,C0、9C,01、78 ,C0、9D,01、80,C8、9E,01、78,C8、9F,01、80, C0、9F,C1,C8,C0、9E,C1,D0,C8、9D,C1,C8,C8、9C,C1,D0, FF,9C,01,C8,FF,9D,01,D0,FF, 9E,01,C8,FF,9F,01,D0, C0、9D,41、28,C0、9C,41、30,C8、9F,41、28,C8、9E, 41、30,C0、9E, 81、78,C0、9F,81、80,C8、9C,81、78,C8、9D, 81、80,C0、9D,41,C8,C0、9C,41,D0,C8、9F,41, C8,C8、9E,41,D0, FF,9E,81,C8,FF,9F,81,D0,FF,9C,81,C8,FF,9D,81,D0;
NMPSM3汇编程序
还为NMPSM3编写了汇编程序。它是一个基本的汇编器,但运行良好,已被用于在多个FPGA项目上为NMPSM3编写代码。
NMPSM3.java
package nmpsm3; import java.io.RandomAccessFile; import java.io.IOException; import java.util.Vector; //A simple class to store alias associations. class AliasSet { AliasSet(String as, String rs) { aliasString = as; replacementString = rs; } public String aliasString; public String replacementString; } //A simple class to store address labels. class Labels { Labels(String ln, int la, int lin) { labelName = ln; labelAddress = la; lineNumber = lin; } public String labelName; public int labelAddress; public int lineNumber; } //A simple class to store error events. class Error{ Error(String es, int el) { errorString = es; errorLine = el; } public String errorString; public int errorLine; } public class NMPSM3 { //Line number where error occurs. private int errorLine = 0; //Current address. private int currentAddress = 0; //Program size limit. Min. = 1, max = 65536, default = 512. private int sizeLimit = 512; //Input file. private RandomAccessFile read; //Output file. private RandomAccessFile write; //Output array. Size calculated later. private String[] output; //Input vector. private Vector<String> input = new Vector<String>(); //Vector of aliases. private Vector<AliasSet> aliases = new Vector<AliasSet>(); //Vector of addresses corresponding to each program line. private Vector<Integer> addresses = new Vector<Integer>(); //Vector of labels. private Vector<Labels> labels = new Vector<Labels>(); //Vector of error messages. private Vector<Error> error = new Vector<Error>(); //Reserved words not to be used in labels. private String[] reserved = {"load", "stor", "jump", "jpnz", "jpz" , "jpnc", "jpc" , "call", "clnz", "clz" , "clnc", "clc" , "ret" , "rtnz", "rtz" , "rtnc", "rtc" , "rtie", "rtid", "in" , "out" , "and" , "or" , "xor" , "add" , "addc", "sub" , "subc", "test", "comp", "asl" , "rol" , "lsr" , "ror" , "setc", "clrc", "ein0", "ein1", "ein2", "ein3", "din0", "din1", "din2", "din3", "push", "pop"}; //Invalid label characters. private String[] invalidChars = {"!" , "@" , "#" , "$" , "%" , "^" , "&" , "*" , "(" , ")" , "+" , "=" , "`" , "~" , "\\", "|" , "]" , "[" , "{" , "}" , ";" , ":" , "\"", "\'", "-" , "<" , "," , ">" , "." , "/" , "?"}; //Arrays containing the different types of instructions. private String[] inst1 = {"ret" , "rtnz", "rtz" , "rtnc", "rtc" , "rtie", "rtid", "setc", "clrc", "ein0", "ein1", "ein2", "ein3", "din0", "din1", "din2", "din3"}; private String[] inst2 = {"jump", "jpnz", "jpz" , "jpnc", "jpc" , "call", "clnz", "clz" , "clnc", "clc" , "asl" , "rol" , "lsr" , "ror" , "push", "pop"}; private String[] inst3 = {"load", "stor", "in" , "out" , "and" , "or" , "xor" , "add" , "addc", "sub" , "subc", "test", "comp"}; //Invalid instructions private String[] invalidInst = {"stork", "jumpk", "jpnzk", "jpnzi", "jpzk" , "jpzi" , "jpnck", "jpnci", "jpck" , "jpci" , "callk", "clnzk", "clnzi", "clzk" , "clzi" , "clnck", "clnci", "clck" , "clci" , "ini" , "outi" , "andi" , "ori" , "xori" , "addi" , "addci", "subi" , "subci", "testi", "compi", "aslk" , "asli" , "rolk" , "roli" , "lsrk" , "lsri" , "rork" , "rori" , "pushk", "pushi", "popk" , "popi"}; //Array of complete commands private String[] completeInst = {"loadk", "load" , "loadi", "stor" , "stori", "jump" , "jumpi", "jpnz" , "jpz" , "jpnc" , "jpc" , "call" , "calli", "clnz" , "clz" , "clnc" , "clc" , "ret" , "rtnz" , "rtz" , "rtnc" , "rtc" , "rtie" , "rtid" , "ink" , "in" , "outk" , "out" , "andk" , "and" , "ork" , "or" , "xork" , "xor" , "addk" , "add" , "addck", "addc" , "subk" , "sub" , "subck", "subc" , "testk", "test" , "compk", "comp" , "asl" , "rol" , "lsr" , "ror" , "setc" , "clrc" , "ein0" , "ein1" , "ein2" , "ein3" , "din0" , "din1" , "din2" , "din3" , "push" , "pop"}; //Opcodes for the above instructions. private String[] opcodes = {"01", "04", "07", "0A", "0D", "10", "13", "16", "19", "1C", "20", "23", "26", "29", "2C", "30", "33", "36", "39", "3C", "40", "43", "46", "49", "4C", "50", "53", "56", "59", "5C", "60", "63", "66", "69", "6C", "70", "73", "76", "79", "7C", "80", "83", "86", "89", "8C", "90", "93", "96", "99", "9C", "A0", "A3", "A6", "A9", "AC", "B0", "B3", "B6", "B9", "BC", "C0", "C6"}; NMPSM3(String[] arguments) { //Check for proper number of arguments. if (arguments.length < 1 || arguments.length > 2) { System.out.println("\nThe proper usage of the assembler is as follows:\n" + "\njava -jar NMPSM3.jar [input.file] {[output.file]}\n\n" + "A minimum of one argument is required which is the input assembly file.\n" + "The output file name is optional. If an output file name is not\n" + "specified, the input file name with a .coe extension is created."); System.exit(1); } try { //Open input assembly file to read from. read = new RandomAccessFile(arguments[0], "r"); } catch (IOException ioException) { System.err.println("Error opening file: " + ioException); System.exit(1); } try { //Fill input vector. while (read.getFilePointer() != read.length()) { input.add(read.readLine()); } } catch (IOException ioException) { System.err.println("Error reading file: " + ioException); System.exit(1); } ////////////////////////Start processing input vector/////////////////////////// //Remove all comments from input vector. CommentRemover(); //Remove all blank lines from input vector. BlankLineRemover(); //Replace all commas with spaces. CommaRemover(); //Remove consecutive blank spaces from input vector. SpaceRemover(); //Create alias vector. AliasVector(); //Replace aliases in input vector. ReplaceAliases(); //Set program size limit. ProgramSizer(); //Fill address vector. FillAddressVector(); //Verify the labels are properly formed and fill the label vector. LabelChecker(); //Process the instructions. ProcessCode(); //Fill output vector. FillOutput(); //Print errors. PrintErrors(); //Check vector. //VectorPrint(); //Check addresses. //AddressPrint(); /////////////////////////End processing input vector//////////////////////////// try { //Open output .coe file to write to. if(arguments.length == 2) write = new RandomAccessFile(arguments[1], "rw"); else write = new RandomAccessFile(arguments[0].substring(0, arguments[0].indexOf('.')) + ".coe", "rw"); } catch (IOException ioException) { System.err.println("Error opening file: " + ioException); System.exit(1); } //Write to output file. WriteOutput(); try { //Close read file if (read != null) { read.close(); } //Close write file if (write != null) { write.close(); } } catch (IOException ioException) { System.err.println("Error closing file: " + ioException); System.exit(1); } System.out.println("\nNMPSM3 .coe file created successfully.\n"); } ///////////////////////////////Utility methods////////////////////////////////// void VectorPrint() { //Print input vector. Used during development. System.out.println("\nInput Vector:"); for(int i = 0; i < input.size(); i++) { System.out.println(input.elementAt(i)); } } void AddressPrint() { //Print addresses vector. Used during development. System.out.println("\nAddress Vector:"); for(int i = 0; i < addresses.size(); i++) { System.out.println(addresses.elementAt(i)); } } void CommentRemover() { //Trim all comments from input vector. for(int i = 0; i < input.size(); i++) { String s = input.elementAt(i); String[] tokenizedString = s.split(";"); input.setElementAt(tokenizedString[0], i); } } void BlankLineRemover() { for(int i = 0; i < input.size(); i++) { String s = input.elementAt(i); s = s.replaceAll("\t", " "); s = s.replaceAll("\n", ""); s = s.trim(); input.setElementAt(s, i); } } void CommaRemover() { for(int i = 0; i < input.size(); i++) { String s = input.elementAt(i); s = s.replaceAll(",", " "); input.setElementAt(s, i); } } void SpaceRemover() { for(int i = 0; i < input.size(); i++) { String s = input.elementAt(i); String newString = ""; String[] tokenizedString = s.split(" "); for(int j = 0; j < tokenizedString.length; j++) { if(tokenizedString[j].length() != 0) newString = newString + tokenizedString[j] + " "; } newString = newString.trim(); input.setElementAt(newString, i); } } void AliasVector() { for(int i = 0; i < input.size(); i++) { try { errorLine = i + 1; String s = input.elementAt(i); String[] tokenizedString = s.split(" "); if(tokenizedString[0].toLowerCase().equals(".alias")) { if(tokenizedString.length != 3) throw new Exception(); //Add alias to vector. aliases.addElement(new AliasSet(tokenizedString[1], tokenizedString[2])); //erase alias from input vector. input.setElementAt("", i); } } catch (Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid .ALIAS", errorLine)); } } } void ReplaceAliases() { for(int i = 0; i < input.size(); i++) { String newString = ""; String temp; String s = input.elementAt(i); String[] tokenizedString = s.split(" "); for(int j = 0; j < tokenizedString.length; j++) { for(int k = 0; k < aliases.size(); k++) { //Check for alias inside parenthesis. if(tokenizedString[j].startsWith("(") && tokenizedString[j].endsWith(")")) { temp = tokenizedString[j].substring(1, tokenizedString[j].length() - 1); if(aliases.elementAt(k).aliasString.equals(temp)) tokenizedString[j] = "(" + aliases.elementAt(k).replacementString + ")"; } if(aliases.elementAt(k).aliasString.equals(tokenizedString[j])) tokenizedString[j] = aliases.elementAt(k).replacementString; } } for(int j = 0; j < tokenizedString.length; j++) { newString = newString + tokenizedString[j] + " "; } newString = newString.trim(); input.setElementAt(newString, i); } } void ProgramSizer() { boolean sizeFound = false; for(int i = 0; i < input.size(); i++) { errorLine = i + 1; String s = input.elementAt(i); String[] tokenizedString = s.split(" "); try { //Size directive already found. Throw exception. if(tokenizedString[0].toLowerCase().equals(".size") && sizeFound == true) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Multiple .SIZE directives", errorLine)); } try { //Check if only one size argument. if(tokenizedString[0].toLowerCase().equals(".size") && tokenizedString.length != 2) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Incorrect number of .SIZE arguments", errorLine)); } try { //Attempt to convert size argument to an integer. if(tokenizedString[0].toLowerCase().equals(".size")) { sizeLimit = NumberConverter(tokenizedString[1]); sizeFound = true; //Remove .size directive input.setElementAt("", i); } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid .SIZE argument", errorLine)); } try { //Check if size argument is within the proper range of 1 to 65536. if(sizeLimit < 1 || sizeLimit > 65536) { sizeLimit = 65536; input.setElementAt("", i); throw new Exception(); } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error(".SIZE argument out of range", errorLine)); } } //Instantiate and size output array. output = new String[sizeLimit]; //Initialize array values to $000000000. for(int i = 0; i < output.length; i++) { output[i] = "000000000"; } } int NumberConverter(String s) { int number = 0; //Radix of number int numberType = 0; //Check if hex number. if(s.charAt(0) == '$') { numberType = 16; s = s.substring(1); } //Check if binary number. else if(s.charAt(0) == '%') { numberType = 2; s = s.substring(1); } else numberType = 10; //Attempt to parse. Exception will be caught by calling method. number = Integer.parseInt(s, numberType); return number; } void FillAddressVector() { for(int i = 0; i < input.size(); i++) { errorLine = i + 1; String s = input.elementAt(i); String[] tokenizedString = s.split(" "); //Empty element. if(s.length() == 0) { addresses.addElement(currentAddress); } //Check to see if valid .ORG directive is present. else if(tokenizedString[0].toLowerCase().equals(".org")) { try { if(tokenizedString.length != 2) throw new Exception(); currentAddress = NumberConverter(tokenizedString[1]); addresses.addElement(currentAddress); //Erase .ORG directive input.setElementAt("", i); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Incorrect number of .ORG arguments", errorLine)); } } //Check to see if label is present. else if(tokenizedString[0].contains(":")) { //Throw exception if more than 1 colon try { int charCounter = 0; for(int j = 0; j < s.length(); j++) if(s.charAt(j) == ':') charCounter++; if(charCounter > 1){ throw new Exception(); } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Multiple labels", errorLine)); } //Check if label only line. if(tokenizedString.length == 1 && tokenizedString[0].charAt(tokenizedString[0].length() - 1) == ':') addresses.addElement(currentAddress); //Else must be a label plus an instruction. else { //Add space between label and instruction. String[] labelTokenizer = s.split(":"); labelTokenizer[0] = labelTokenizer[0].trim(); labelTokenizer[1] = labelTokenizer[1].trim(); input.setElementAt(labelTokenizer[0] + ": " + labelTokenizer[1], i); addresses.addElement(currentAddress); currentAddress++; } } //Only possibility left is an instruction only. else { addresses.addElement(currentAddress); currentAddress++; } //Throw exception if spaces in label. try { for(int k = 1; k < tokenizedString.length; k++) if(tokenizedString[k].contains(":")) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid label", errorLine)); } } } void LabelChecker() { for(int i = 0; i < input.size(); i++) { errorLine = i + 1; String newString = ""; String s = input.elementAt(i); String[] tokenizedString = s.split(" "); //Fill labels vector. if(tokenizedString[0].length() > 0 && tokenizedString[0].charAt(tokenizedString[0].length() - 1) == ':') { labels.addElement(new Labels(tokenizedString[0], addresses.elementAt(i), errorLine)); //Remove label from input vector. if(tokenizedString.length > 1) { for(int j = 1; j < tokenizedString.length; j++) newString = newString + tokenizedString[j] + " "; newString.trim(); input.setElementAt(newString, i); } else input.setElementAt("", i); } } //Remove colons from labels and throw exceptions on empty labels. for(int i = 0; i < labels.size(); i++) { try { errorLine = labels.elementAt(i).lineNumber; labels.elementAt(i).labelName = labels.elementAt(i).labelName.split(":")[0]; } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid label", errorLine)); } } //Check for reserved words. for(int i = 0; i < labels.size(); i++) { try { errorLine = labels.elementAt(i).lineNumber; for(int j = 0; j < reserved.length; j++) if(labels.elementAt(i).labelName.toLowerCase().equals(reserved[j].toLowerCase())) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Reserved word used in label", errorLine)); } } //Check for invalid characters. for(int i = 0; i < labels.size(); i++) { try { errorLine = labels.elementAt(i).lineNumber; for(int j = 0; j < invalidChars.length; j++) if(labels.elementAt(i).labelName.contains(invalidChars[j])) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid character in label", errorLine)); } } //Check to make sure label does not start with a number. for(int i = 0; i < labels.size(); i++) { try { errorLine = labels.elementAt(i).lineNumber; if(Character.isDigit(labels.elementAt(i).labelName.charAt(0))) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Label starting with a number", errorLine)); } } //Check for duplicate labels. for(int i = 0; i < labels.size() - 1; i++) { try { for(int j = i + 1; j < labels.size(); j++) { errorLine = labels.elementAt(j).lineNumber; if(labels.elementAt(i).labelName.equals(labels.elementAt(j).labelName)) throw new Exception(); } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Duplicate label", errorLine)); //System.err.println("Duplicate label. Line " + errorLine); //System.exit(1); } } //Check for labels already being used as aliases. for(int i = 0; i < labels.size(); i++) { try{ for(int j = 0; j < aliases.size(); j++) { errorLine = labels.elementAt(i).lineNumber; if(labels.elementAt(i).labelName.equals(aliases.elementAt(j).aliasString)) throw new Exception(); } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Label already used as alias", errorLine)); } } } void ProcessCode() { for(int i = 0; i < input.size(); i++) { int instType, argument1, argument2; String argHex1, argHex2; errorLine = i + 1; String s = input.elementAt(i); if(s.length() != 0) { String[] tokenizedString = s.split(" "); instType = GetInstType(tokenizedString[0]); //Check to see if instruction is a valid instruction. try { if(instType == -1) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Undefined instruction", errorLine)); } try { if(tokenizedString.length != instType) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Incorrect number of arguments", errorLine)); } //Check if instruction is a constant instruction and change it accordingly. if(instType == 3 && tokenizedString[2].startsWith("#")) { tokenizedString[0] = tokenizedString[0] + "k"; tokenizedString[2] = tokenizedString[2].substring(1, tokenizedString[2].length()); //Special case for LOAD rx, #k for loading labels. if(tokenizedString[0].toLowerCase().equals("loadk")) for(int j = 0; j < labels.size(); j++) if(tokenizedString[2].equals(labels.elementAt(j).labelName)) tokenizedString[2] = "" + labels.elementAt(j).labelAddress; input.setElementAt((tokenizedString[0] + " " + tokenizedString[1] + " " + tokenizedString[2]), i); } if(instType == 2 && tokenizedString[1].startsWith("#")) { tokenizedString[0] = tokenizedString[0] + "k"; tokenizedString[1] = tokenizedString[1].substring(1, tokenizedString[1].length()); input.setElementAt((tokenizedString[0] + " " + tokenizedString[1]), i); } //Check if instruction is an indirect instruction and change it accordingly. if(instType == 3 && tokenizedString[2].startsWith("(") && tokenizedString[2].endsWith(")")) { tokenizedString[0] = tokenizedString[0] + "i"; tokenizedString[2] = tokenizedString[2].substring(1, tokenizedString[2].length() - 1); input.setElementAt((tokenizedString[0] + " " + tokenizedString[1] + " " + tokenizedString[2]), i); } if(instType == 2 && tokenizedString[1].startsWith("(") && tokenizedString[1].endsWith(")")) { tokenizedString[0] = tokenizedString[0] + "i"; tokenizedString[1] = tokenizedString[1].substring(1, tokenizedString[1].length() - 1); input.setElementAt((tokenizedString[0] + " " + tokenizedString[1]), i); } //Check to see if illegal addressing mode for this instruction. try { for(int j = 0; j < invalidInst.length; j++) if(tokenizedString[0].toLowerCase().equals(invalidInst[j])) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid addressing mode", errorLine)); } //Substitute labels for addresses. if(tokenizedString[0].toLowerCase().equals("jump") || tokenizedString[0].toLowerCase().equals("jpnz") || tokenizedString[0].toLowerCase().equals("jpz") || tokenizedString[0].toLowerCase().equals("jpnc") || tokenizedString[0].toLowerCase().equals("jpc") || tokenizedString[0].toLowerCase().equals("call") || tokenizedString[0].toLowerCase().equals("clnz") || tokenizedString[0].toLowerCase().equals("clz") || tokenizedString[0].toLowerCase().equals("clnc") || tokenizedString[0].toLowerCase().equals("clc")) for(int j = 0; j < labels.size(); j++) if(tokenizedString[1].equals(labels.elementAt(j).labelName)) input.setElementAt((tokenizedString[0] + " " + labels.elementAt(j).labelAddress), i); //Validate parameters and replace instructions with opcodes. try { //Single argument instruction. if(instType == 1) for(int j = 0; j < completeInst.length; j++) if(tokenizedString[0].toLowerCase().equals(completeInst[j])) input.setElementAt((opcodes[j] + "0000000"), i); //Two argument, indirect instruction or direct instruction. if(instType == 2 && (tokenizedString[0].endsWith("i") || tokenizedString[0].toLowerCase().equals("asl") || tokenizedString[0].toLowerCase().equals("rol") || tokenizedString[0].toLowerCase().equals("lsr") || tokenizedString[0].toLowerCase().equals("ror") || tokenizedString[0].toLowerCase().equals("push") || tokenizedString[0].toLowerCase().equals("pop"))) { argument1 = NumberConverter(tokenizedString[1]); try { if(argument1 >= 0x400) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Register address out of range", errorLine)); } //convert integer to hex string. argHex1 = Integer.toHexString(argument1); //Add leading zeroes, if necessary. if(argHex1.length() == 1) argHex1 = "00" + argHex1; if(argHex1.length() == 2) argHex1 = "0" + argHex1; //Replace command in input vector with opcode. for(int j = 0; j < completeInst.length; j++) if(tokenizedString[0].toLowerCase().equals(completeInst[j])) input.setElementAt((opcodes[j] + argHex1.toUpperCase() + "0000"), i); } //Two argument, address instruction. if(tokenizedString[0].toLowerCase().equals("jump") || tokenizedString[0].toLowerCase().equals("jpnz") || tokenizedString[0].toLowerCase().equals("jpz") || tokenizedString[0].toLowerCase().equals("jpnc") || tokenizedString[0].toLowerCase().equals("jpc") || tokenizedString[0].toLowerCase().equals("call") || tokenizedString[0].toLowerCase().equals("clnz") || tokenizedString[0].toLowerCase().equals("clz") || tokenizedString[0].toLowerCase().equals("clnc") || tokenizedString[0].toLowerCase().equals("clc")) { //Retokenize line string. s = input.elementAt(i); tokenizedString = s.split(" "); argument1 = NumberConverter(tokenizedString[1]); try { if(argument1 >= 0x10000) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("ROM address out of range", errorLine)); } //Jump out of program size limit. try { if(argument1 > sizeLimit) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("JUMP/CALL address greater than program size limit", errorLine)); } //convert integer to hex string. argHex1 = Integer.toHexString(argument1); //Add leading zeroes, if necessary. if(argHex1.length() == 1) argHex1 = "000" + argHex1; if(argHex1.length() == 2) argHex1 = "00" + argHex1; if(argHex1.length() == 3) argHex1 = "0" + argHex1; //Replace command in input vector with opcode. for(int j = 0; j < completeInst.length; j++) if(tokenizedString[0].toLowerCase().equals(completeInst[j])) input.setElementAt((opcodes[j] + "000" + argHex1.toUpperCase()), i); } //Three argument, indirect instruction and immediate instruction. if(instType == 3) { //Identify instruction. for(int j = 0; j < completeInst.length; j++) { if(tokenizedString[0].toLowerCase().equals(completeInst[j])) { //First argument same type regardless of instruction type. argument1 = NumberConverter(tokenizedString[1]); try { if(argument1 >= 0x400) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Register address out of range", errorLine)); } //Add leading zeroes, if necessary. argHex1 = Integer.toHexString(argument1); if(argHex1.length() == 1) argHex1 = "00" + argHex1; if(argHex1.length() == 2) argHex1 = "0" + argHex1; //Indirect instruction. if(tokenizedString[0].endsWith("i")) { argument2 = NumberConverter(tokenizedString[2]); try { if(argument2 >= 0x400) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Register address out of range", errorLine)); } //Add leading zeroes, if necessary. argHex2 = Integer.toHexString(argument2); if(argHex2.length() == 1) argHex2 = "000" + argHex2; if(argHex2.length() == 2) argHex2 = "00" + argHex2; if(argHex2.length() == 3) argHex2 = "0" + argHex2; } //Immediate instruction. else if(tokenizedString[0].endsWith("k")){ argument2 = NumberConverter(tokenizedString[2]); try { if(argument2 >= 0x10000) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Constant value out of range", errorLine)); } //Add leading zeroes, if necessary. argHex2 = Integer.toHexString(argument2); if(argHex2.length() == 1) argHex2 = "000" + argHex2; if(argHex2.length() == 2) argHex2 = "00" + argHex2; if(argHex2.length() == 3) argHex2 = "0" + argHex2; } //Direct instruction. else { argument2 = NumberConverter(tokenizedString[2]); try { if(argument2 >= 0x400) throw new Exception(); } catch (Exception excepion) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Register address out of range", errorLine)); } //Add leading zeroes, if necessary. argHex2 = Integer.toHexString(argument2); if(argHex2.length() == 1) argHex2 = "000" + argHex2; if(argHex2.length() == 2) argHex2 = "00" + argHex2; if(argHex2.length() == 3) argHex2 = "0" + argHex2; } //Replace command in input vector with opcode. input.setElementAt((opcodes[j] + argHex1.toUpperCase() + argHex2.toUpperCase()), i); } } } } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Invalid parameter", errorLine)); } } } } int GetInstType(String s) { //Search through the instructions to make sure they are valid and //determine how many parameters each instruction should have. for(int i = 0; i < inst1.length; i++) { if(s.toLowerCase().equals(inst1[i])) return 1; } for(int i = 0; i < inst2.length; i++) { if(s.toLowerCase().equals(inst2[i])) return 2; } for(int i = 0; i < inst3.length; i++) { if(s.toLowerCase().equals(inst3[i])) return 3; } return -1; } void FillOutput() { for(int i = 0; i < input.size(); i++) { errorLine = i + 1; //Process element only if it contains data. if(input.elementAt(i).length() != 0) { //Make sure address is within program size limit. try { if(addresses.elementAt(i) >= sizeLimit) throw new Exception(); } catch(Exception exception) { error.addElement(new Error("Instruction address exceeds program size limit", errorLine)); } //Check to see if instruction address is not already occupied. try { if(!output[addresses.elementAt(i)].equals("000000000")) throw new Exception(); } catch(Exception exception) { if(!CheckErrorLine(errorLine)) error.addElement(new Error("Instruction address already occupied", errorLine)); } //Write opcode to output vector. if(error.isEmpty()) output[addresses.elementAt(i)] = input.elementAt(i); } } } void WriteOutput() { String memInit = "memory_initialization_radix=16;"; String initVector = "memory_initialization_vector="; try { write.setLength(0); //Erase any previous contents. write.writeBytes(memInit); //Write init strings. write.writeByte(0x0D); //Notepad new lines. write.writeByte(0x0A); write.writeBytes(initVector); //Write opcodes. for(int i = 0; i < output.length - 1; i++) { //New line after every eight opcodes. if(i % 8 == 0) { write.writeByte(0x0D); //Notepad new lines. write.writeByte(0x0A); } write.writeBytes(output[i] + ", "); } //Write last instruction in file. if((output.length % 8 == 1) && (output.length > 1)) { write.writeByte(0x0D); //Notepad new lines. write.writeByte(0x0A); } write.writeBytes(output[output.length - 1] + ";"); } catch (IOException ioException) { System.err.println("Error writing to .coe file: " + ioException); System.exit(1); } } void PrintErrors() { if(error.isEmpty()) { System.out.println("\nNo errors detected."); return; } System.out.println("\nErrors:"); for(int i = 0; i < error.size(); i++) { System.out.println(error.elementAt(i).errorString + " " + error.elementAt(i).errorLine); } System.out.println("Total errors: " + error.size()); System.exit(1); } boolean CheckErrorLine(int errorLine) { for(int i = 0; i < error.size(); i++) if(error.elementAt(i).errorLine == errorLine) return true; return false; } /////////////////////////////////Main method//////////////////////////////////// public static void main(String[] args) { NMPSM3 nmpsm3 = new NMPSM3(args); } }
NMPSM3软件
下面的第一个文件是控制项目的汇编语言程序。下一个文件是汇编器的编译版本。第三个文件是一个简单的批处理文件,它运行汇编程序并将NMPSM3代码汇编为.coe文件。
program.asm
.size 1024 ;------------------------------------Addressable hardware list------------------------------------- ;0x0000 - 0x0007 ROM controller. ;0x0010 Timer 0. ;0x0011 Timer 1. ;0x0012 Input MUX - ROM data. ;0x0013 Input MUX - Switches. ;0x0020 LED controller. ;0x0024 - 0x0027 Seven segment controller. ;0x0030 - 0x0033 Input MUX - Clock data. ;0x0034 Input MUX - Microphone data. ;-------------------------------------VGA Controller addresses------------------------------------- ;0x8000 - 0x87FF Background pattern table A. ;0x8800 - 0x8FFF Background pattern table B. ;0x9000 - 0x97FF Sprite pattern table A. ;0x9800 - 0x9FFF Sprite pattern table B. ;0xA000 - 0xA3FF Name table. ;0xA400 - 0xA4FF Unused. ;0xA500 - 0xA5FF Background attribute table. ;0xA600 - 0xA60F Background pallettes 0 through 15. ;0xA610 - 0xA61F Sprite pallettes 0 through 15. ;0xA700 Base color (background color). ;0xB000 - 0xB3FF Sprite RAM (256 sprites). ;--------------------------------------Sprite RAM Memory Map--------------------------------------- ;0xB000 - 0xb01F Bouncing sprites (8 sprites). ;0xB020 - 0xB05F Rotation sprites (16 sprites). ;0xB0D0 - 0xB0FF Samus sprites (12 sprites). ;0xB100 - 0xB2FF Audio sprites. ;---------------------------------------------Defines---------------------------------------------- ;ASCII numbers. .alias ZERO #$30 .alias ONE #$31 .alias TWO #$32 .alias THREE #$33 .alias FOUR #$34 .alias FIVE #$35 .alias SIX #$36 .alias SEVEN #$37 .alias EIGHT #$38 .alias NINE #$39 ;ASCII letters. .alias A #$41 .alias B #$42 .alias C #$43 .alias D #$44 .alias E #$45 .alias F #$46 .alias G #$47 .alias H #$48 .alias I #$49 .alias J #$4A .alias K #$4B .alias L #$4C .alias M #$4D .alias N #$4E .alias O #$4F .alias P #$50 .alias Q #$51 .alias R #$52 .alias S #$53 .alias T #$54 .alias U #$55 .alias V #$56 .alias W #$57 .alias X #$58 .alias Y #$59 .alias Z #$5A .alias a #$61 .alias b #$62 .alias c #$63 .alias d #$64 .alias e #$65 .alias f #$66 .alias g #$67 .alias h #$68 .alias i #$69 .alias j #$6A .alias k #$6B .alias l #$6C .alias m #$6D .alias n #$6E .alias o #$6F .alias p #$70 .alias q #$71 .alias r #$72 .alias s #$73 .alias t #$74 .alias u #$75 .alias v #$76 .alias w #$77 .alias x #$78 .alias y #$79 .alias z #$7A ;ASCII symbols. .alias SPACE #$20 .alias COLON #$3A .alias COMMA #$2C .alias PERIOD #$2E .alias CR #$0D ;Carriage return. .alias FSLASH #$2F ;Forward slash. .alias LBAR #$5F ;Underscore. .alias MBAR #$2D ;Minus sign. .alias UBAR #$FF ;Upper bar. .alias STAR #$2A ;Multiply sign. .alias OPEN_C_BRACE #$7B ;Open curly brace. ;Output port IDs. .alias LEDTBL #$0000 ; .alias TIMELOTBL #$0001 ; .alias SEG7INDEXTBL #$0002 ; .alias SEG7TBL #$0003 ; .alias LOOKUPADDR #$0004 ;ROM addresses. .alias MESSAGETBL #$0005 ; .alias PALETTETBL #$0006 ; .alias SPRITETBL #$0007 ; .alias SAMUSTBL #$0006 ; .alias SET_BAUD #$0200 ; .alias TX_STORE_BYTE #$0201 ; .alias TX_FLUSH #$0202 ;UART control. .alias TX_PURGE #$0203 ; .alias RX_NEXT_BYTE #$0204 ; .alias RX_PURGE #$0205 ; .alias DOT0 #$A288 ; .alias DOT1 #$A294 ;Name table addresses--> .alias DOT2 #$A2E8 ;for clock dots. .alias DOT3 #$A2F4 ; .alias LOSEC #$A29B ; .alias HISEC #$A296 ;Starting addresses of--> .alias LOMIN #$A28F ;clock digits in name--> .alias HIMIN #$A28A ;table. .alias LOHOUR #$A283 ; .alias A #$A29F ;Name table positions--> .alias B #$A2FF ;of A and P in clock. .alias TIMER0 #$0010 ;Timers .alias TIMER1 #$0011 ; .alias LEDIO #$0020 ;LED controller. .alias LEDIO2 #$0021 ;Upper LED controller. .alias SEG0 #$0024 ; .alias SEG1 #$0025 ;7 segment display .alias SEG2 #$0026 ; .alias SEG3 #$0027 ; ;Input port IDs. .alias UARTDATA #$0003 ; .alias TXCOUNT #$0004 ;UART ports. .alias RXCOUNT #$0005 ; .alias ROMDATA #$0012 ;ROM data .alias SWITCHES #$0013 ;Switches .alias SEC #$0030 ; .alias MIN #$0031 ;Clock data .alias HOUR #$0032 ; .alias BLINK #$0033 ; .alias MICDATA #$0034 ;Mic data ;RAM aliases. .alias ledIndex $0000 .alias timeIndex $0001 .alias segIndex $0002 .alias switchReg $0003 .alias waitReg $0004 .alias sp0y $0010 ; .alias sp1y $0011 ; .alias sp2y $0012 ; .alias sp3y $0013 ;Bouncing sprite y positions. .alias sp4y $0014 ; .alias sp5y $0015 ; .alias sp6y $0016 ; .alias sp7y $0017 ; .alias sp0x $0018 ; .alias sp1x $0019 ; .alias sp2x $001A ; .alias sp3x $001B ;Bouncing sprite x positions. .alias sp4x $001C ; .alias sp5x $001D ; .alias sp6x $001E ; .alias sp7x $001F ; .alias sp0m $0020 ; .alias sp1m $0021 ; .alias sp2m $0022 ; .alias sp3m $0023 ;Bouncing sprite move directions. .alias sp4m $0024 ; .alias sp5m $0025 ; .alias sp6m $0026 ; .alias sp7m $0027 ; .alias palRegs $0030 ;Thru $4F .alias tempReg0 $0050 .alias tempReg1 $0051 .alias tempReg2 $0052 .alias tempReg3 $0053 .alias colCount $0054 .alias rowCount $0055 .alias numIn $0056 .alias numOffset $0057 .alias AMPMReg0 $0058 .alias AMPMReg1 $0059 .alias startReg $005A .alias stopReg $005B .alias mIndexReg $005C .alias bcDelReg $005D .alias bcReg $005E .alias checkReg $005F .alias palDelReg $0060 .alias mirDelReg $0061 .alias mirPtrReg $0062 .alias audPtrReg $0063 .alias audCtrReg $0064 .alias audHldReg $0065 .alias miscReg $0066 .alias atDelReg $0067 .alias atStatReg $0068 .alias callReg $0069 .alias clearReg $006A .alias swReg $006B .alias anDelReg $006C .alias samROMReg $006D .alias samXReg $006E .alias movDelReg $006F .alias samM0Reg $0090 .alias samM1Reg $0091 .alias samM2Reg $0092 .alias micDelReg $0093 .alias micStaReg $0094 .alias micSmpReg $0095 .alias waitStateReg $0096 .alias audioRegs $0100 ;Through $17F(128 total). .alias uartTxByte $0180 ; .alias uartRxByte $0181 ;UART value registers. .alias uartTxCount $0182 ; .alias uartRxCount $0183 ; .alias bufCurPointer $0184 ;Pointer to current position in uart buffer. .alias bufEndPointer $0185 ;Pointer to last position in uart buffer. .alias uartBuf $0186 ;thru $01A1. ;Constants. .alias UPRIGHT #$20 .alias UPLEFT #$60 .alias DOWNRIGHT #$A0 .alias DOWNLEFT #$E0 .alias PALREGS #$30 .alias AT0 #$1B .alias AT1 #$C6 .alias AT2 #$B1 .alias AT3 #$6C .alias SPRITEREGS #$0100 ;Start of sprite audio regs. .alias ENDAUDIOREGS #$0180 ;End of sprite audio regs. .alias PPUAUDSPSTART #$B100 ;Start address of audio sprites in PPU. .alias PPUAUDSPEND #$B300 ;End address of audio sprites in PPU. ;-------------------------------------------Start of code------------------------------------------ jump Reset ; jump Interrupt0 ; jump Interrupt1 ;Reset and interrupt vectors. jump Interrupt2 ; jump Interrupt3 ; Reset: call ClearRegs call ClearBouncingSprites call SetDefaultPalettes call InitLEDIndex call Init7SegsIndex load micSmpReg, #$0080 load samROMReg, #$40 load samXReg , #$E5 load samM0Reg , #$03 load samM1Reg , #$03 load samM2Reg , #$03 load AMPMReg1 , #$11 load tempReg0 , #5 out tempReg0 , TIMER0 out tempReg0 , TIMER1 load uartTxByte #$D9 ;Set UART baud rate to 230400. out uartTxByte SET_BAUD ; ein0 ein1 ein2 MainLoop: comp waitReg , #1 ;Check to see if current--> jpz MainLoop ;frame processing is done. din2 ;Disable VBlank interrupt. load waitReg , #1 ;Process current frame data. add micDelReg, #1 comp micDelReg, #3 clz GetAudioData ein2 ;Enable VBlank interrupt. jump MainLoop ;Run main loop forever. ;The following function sets all the register values to 0. ClearRegs: load 0 #$3FF ; load 1 #0 ; ClearRegsLoop: ;Start at top register and--> stor 1 (0) ;decrement through them setting--> sub 0 #1 ;them all to 0. jpnz ClearRegsLoop ; ret ; Interrupt0: out timeIndex, TIMELOTBL in tempReg0 , ROMDATA or tempReg0 , #0 clz InitLEDIndex out timeIndex, TIMELOTBL in tempReg0 , ROMDATA out tempReg0 , TIMER0 out ledIndex , LEDTBL in tempReg0 , ROMDATA out tempReg0 , LEDIO add timeIndex, #1 add ledIndex , #1 rtie InitLEDIndex: load ledIndex , #0 load timeIndex, #0 ret Interrupt1: comp segIndex , #$20 clz Init7SegsIndex load tempReg0 , segIndex load tempReg2 , SEG0 call DoSeg add tempReg0 , #1 load tempReg2 , SEG1 call DoSeg add tempReg0 , #1 load tempReg2 , SEG2 call DoSeg add tempReg0 , #1 load tempReg2 , SEG3 call DoSeg load tempReg0 , #$B0 out tempReg0 , TIMER1 add segIndex , #1 rtie DoSeg: out tempReg0 , SEG7INDEXTBL in tempReg1 , ROMDATA out tempReg1 , SEG7TBL in tempReg1 , ROMDATA out tempReg1 , tempReg2 ret Init7SegsIndex: load segIndex , #0 ret Interrupt2: Interrupt3: load waitReg , #0 call DoMessage call DoClock call DoBaseColor call DoBouncingSprites call DoPaletteChange call DoSpriteMirroring call DoSpriteAudio call DoAttribChange call DoSpritePriority call DoUART ;Check for waiting data in UART. rtie DoFunction: in switchReg, SWITCHES and switchReg, swReg DoSubFunction: comp switchReg, swReg jpz RunFunction jump ClearFunction RunFunction: jump (callReg) ClearFunction: jump (clearReg) DoZeroFunction: in switchReg, SWITCHES jump DoSubFunction DoUART: call CheckUART ;;Get any waiting bytes from UART. call EchoByte ;Echo byte back to terminal. ret CheckUART: in uartRxByte, UARTDATA ;Get UART byte. comp uartRxByte, #0 ;See if it is a valid byte. rtz ;If not, return. out uartRxByte, LEDIO2 ;Echo byte to the upper LEDs. out uartRxByte, TX_STORE_BYTE ;Echo byte back to terminal. out uartRxByte, RX_NEXT_BYTE ;Move to next position. jump CheckUART EchoByte: out tempReg0, TX_FLUSH ;Flush tx output. ret ; DoClock: load swReg , #$01 load callReg , #LoadClock load clearReg , #ClearClock jump DoFunction LoadClock: in tempReg0 , BLINK or tempReg0 , #0 clnz DrawDots or tempReg0 , #0 clz ClearDots in tempReg0 , HOUR and tempReg0 , #$00F0 clnz DrawOne and tempReg0 , #$00F0 clz ClearOne in tempReg0 , SEC call NibbleShift load numOffset, LOSEC call DisplayDigit in tempReg0 , SEC and tempReg0 , #$F0 load numOffset, HISEC call DisplayDigit in tempReg0 , MIN call NibbleShift load numOffset, LOMIN call DisplayDigit in tempReg0 , MIN and tempReg0 , #$F0 load numOffset, HIMIN call DisplayDigit in tempReg0 , HOUR call NibbleShift load numOffset, LOHOUR call DisplayDigit call AMPM load tempReg0 , AMPMReg0 comp tempReg0 , #0 clz AM load tempReg0 , AMPMReg0 comp tempReg0 , #0 clnz PM ret DrawDots: load tempReg0 , #$6F out tempReg0 , DOT0 out tempReg0 , DOT1 out tempReg0 , DOT2 out tempReg0 , DOT3 ret ClearDots: load tempReg0 , #$FF out tempReg0 , DOT0 out tempReg0 , DOT1 out tempReg0 , DOT2 out tempReg0 , DOT3 ret DrawOne: load tempReg0 , #$44 out tempReg0 , #$A280 load tempReg0 , #$4D out tempReg0 , #$A281 load tempReg0 , #$50 out tempReg0 , #$A2A0 load tempReg0 , #$47 out tempReg0 , #$A2A1 out tempReg0 , #$A2C1 load tempReg0 , #$55 out tempReg0 , #$A2E1 ret ClearOne: load tempReg0 , #$FF out tempReg0 , #$A280 out tempReg0 , #$A281 out tempReg0 , #$A2A0 out tempReg0 , #$A2A1 out tempReg0 , #$A2C1 out tempReg0 , #$A2E1 ret NibbleShift: asl tempReg0 asl tempReg0 asl tempReg0 asl tempReg0 ret DisplayDigit: load colCount , #4 load rowCount , #4 DoCol: out tempReg0 , LOOKUPADDR in numIn , ROMDATA out numIn , numOffset add tempReg0 , #1 add numOffset, #1 sub colCount , #1 jpnz DoCol load colCount , #4 DoRow: sub rowCount , #1 add numOffset , #$1C or rowCount , #0 rtz jump DoCol AMPM: load tempReg0 , AMPMReg1 in tempReg1 , HOUR stor tempReg1 , AMPMReg1 comp tempReg0 , #%00010001 rtnz comp tempReg1 , #%00010010 rtnz ToggleAMPM: xor AMPMReg0 , #$00FF ret AM: load tempReg1 , #$0A out tempReg1 , A load tempReg1 , #$FF out tempReg1 , B ret PM: load tempReg1 , #$FF out tempReg1 , A load tempReg1 , #$19 out tempReg1 , B ret ClearClock: load startReg , #$A2FF load stopReg , #$A27F call ClearMessage ret ;Draw and clear on screen messages. DoMessage: load swReg , #$00 load callReg , #ClearDemoMessage load clearReg , #DrawDemoMessage call DoZeroFunction load swReg , #$01 load callReg , #DrawTiledClockMessage load clearReg , #ClearTiledClockMessage call DoFunction load swReg , #$02 load callReg , #DrawSpriteAudioMessage load clearReg , #ClearSpriteAudioMessage call DoFunction load swReg , #$04 load callReg , #DrawBaseColorMessage load clearReg , #ClearBaseColorMessage call DoFunction load swReg , #$08 load callReg , #DrawBouncingSpritesMessage load clearReg , #ClearBouncingSpritesMessage call DoFunction load swReg , #$10 load callReg , #DrawAttributeTableMessage load clearReg , #ClearAttributeTableMessage call DoFunction load swReg , #$20 load callReg , #DrawSpritePriorityMessage load clearReg , #ClearSpritePriorityMessage call DoFunction load swReg , #$40 load callReg , #DrawPaletteChangeMessage load clearReg , #ClearPaletteChangeMessage call DoFunction load swReg , #$80 load callReg , #DrawSpriteMirroringMessage load clearReg , #ClearSpriteMirroringMessage call DoFunction ret DrawDemoMessage: load mIndexReg , #$15 load startReg , #$A1F5 load stopReg , #$A1DF call DrawMessage ret ClearDemoMessage: load startReg , #$A1F5 load stopReg , #$A1DF call ClearMessage ret DrawTiledClockMessage: load mIndexReg, #$20 load startReg , #$A20A load stopReg , #$A1FF call DrawMessage ret ClearTiledClockMessage: load startReg , #$A20A load stopReg , #$A1FF call ClearMessage ret DrawSpriteAudioMessage: load mIndexReg, #$2C load startReg , #$A21B load stopReg , #$A20F call DrawMessage ret ClearSpriteAudioMessage: load startReg , #$A21B load stopReg , #$A20F call ClearMessage ret DrawBaseColorMessage: load mIndexReg, #$36 load startReg , #$A229 load stopReg , #$A21F call DrawMessage ret ClearBaseColorMessage: load startReg , #$A229 load stopReg , #$A21F call ClearMessage ret DrawBouncingSpritesMessage: load mIndexReg, #$46 load startReg , #$A23F load stopReg , #$A22F call DrawMessage ret ClearBouncingSpritesMessage: load startReg , #$A23F load stopReg , #$A22F call ClearMessage ret DrawAttributeTableMessage: load mIndexReg, #$55 load startReg , #$A24E load stopReg , #$A23F call DrawMessage ret ClearAttributeTableMessage: load startReg , #$A24E load stopReg , #$A23F call ClearMessage ret DrawSpritePriorityMessage: load mIndexReg, #$64 load startReg , #$A25E load stopReg , #$A24F call DrawMessage ret ClearSpritePriorityMessage: load startReg , #$A25E load stopReg , #$A24F call ClearMessage ret DrawPaletteChangeMessage: load mIndexReg, #$72 load startReg , #$A26D load stopReg , #$A25F call DrawMessage ret ClearPaletteChangeMessage: load startReg , #$A26D load stopReg , #$A25F call ClearMessage ret DrawSpriteMirroringMessage: load mIndexReg, #$82 load startReg , #$A27F load stopReg , #$A26F call DrawMessage ret ClearSpriteMirroringMessage: load startReg , #$A27F load stopReg , #$A26F call ClearMessage ret DrawMessage: out mIndexReg, MESSAGETBL in tempReg0 , ROMDATA out tempReg0 , startReg sub startReg , #1 sub mIndexReg, #1 comp startReg , stopReg jpnz DrawMessage ret ClearMessage: load mIndexReg, #$FF out mIndexReg, startReg sub startReg , #1 comp startReg , stopReg jpnz ClearMessage ret DoBaseColor: in switchReg , SWITCHES and switchReg , #$04 comp switchReg , #$04 clz UpdateBaseColor comp switchReg , #$04 clnz ClearBaseColor ret UpdateBaseColor: add bcDelReg , #1 comp bcDelReg , #$20 clz IncrementBaseColor out bcReg , #$A700 ret IncrementBaseColor: add bcReg , #1 load bcDelReg , #0 ret ClearBaseColor: load bcReg , #0 out bcReg , #$A700 load bcDelReg , #0 ret DoBouncingSprites: load swReg , #$08 load callReg , #UpdateBouncingSprites load clearReg , #ClearBouncingSprites call DoFunction call DrawBouncingSprites ret UpdateBouncingSprites: call CheckBouncingSpritesStart load tempReg0 , #$20 UpdateBouncingSpritesLoop: load tempReg3 , (tempReg0) comp tempReg3 , UPLEFT clz MoveUpLeft comp tempReg3 , UPRIGHT clz MoveUpRight comp tempReg3 , DOWNLEFT clz MoveDownLeft comp tempReg3 , DOWNRIGHT clz MoveDownRight add tempReg0 , #1 comp tempReg0 , #$28 jpnz UpdateBouncingSpritesLoop ret MoveUpRight: call CheckYMin comp checkReg , #1 jpz ChangeToDownRight call CheckXMax comp checkReg , #1 jpz ChangeToUpLeft load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) add tempReg2 , #1 stor tempReg2 , (tempReg1) sub tempReg1 , #8 load tempReg2 , (tempReg1) sub tempReg2 , #1 stor tempReg2 , (tempReg1) ret MoveUpLeft: call CheckYMin comp checkReg , #1 jpz ChangeToDownLeft call CheckXMin comp checkReg , #1 jpz ChangeToUpRight load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) sub tempReg2 , #1 stor tempReg2 , (tempReg1) sub tempReg1 , #8 load tempReg2 , (tempReg1) sub tempReg2 , #1 stor tempReg2 , (tempReg1) ret MoveDownRight: call CheckYMax comp checkReg , #1 jpz ChangeToUpRight call CheckXMax comp checkReg , #1 jpz ChangeToDownLeft load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) add tempReg2 , #1 stor tempReg2 , (tempReg1) sub tempReg1 , #8 load tempReg2 , (tempReg1) add tempReg2 , #1 stor tempReg2 , (tempReg1) ret MoveDownLeft: call CheckXMin comp checkReg , #1 jpz ChangeToDownRight call CheckYMax comp checkReg , #1 jpz ChangeToUpLeft load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) sub tempReg2 , #1 stor tempReg2 , (tempReg1) sub tempReg1 , #8 load tempReg2 , (tempReg1) add tempReg2 , #1 stor tempReg2 , (tempReg1) ret CheckYMin: load tempReg1 , tempReg0 sub tempReg1 , #16 load tempReg2 , (tempReg1) comp tempReg2 , #0 jpz ExtentReached load checkReg , #0 ret CheckYMax: load tempReg1 , tempReg0 sub tempReg1 , #16 load tempReg2 , (tempReg1) comp tempReg2 , #231 jpz ExtentReached load checkReg , #0 ret CheckXMin: load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) comp tempReg2 , #0 jpz ExtentReached load checkReg , #0 ret CheckXMax: load tempReg1 , tempReg0 sub tempReg1 , #8 load tempReg2 , (tempReg1) comp tempReg2 , #247 jpz ExtentReached load checkReg , #0 ret ExtentReached: load checkReg , #1 ret ChangeToDownRight: load tempReg1 , DOWNRIGHT stor tempReg1 , (tempReg0) ret ChangeToDownLeft: load tempReg1 , DOWNLEFT stor tempReg1 , (tempReg0) ret ChangeToUpRight: load tempReg1 , UPRIGHT stor tempReg1 , (tempReg0) ret ChangeToUpLeft: load tempReg1 , UPLEFT stor tempReg1 , (tempReg0) ret ClearBouncingSprites: load tempReg0 , #$0F load tempReg1 , #$FF YClearLoop: add tempReg0 , #1 stor tempReg1 , (tempReg0) comp tempReg0 , #$17 jpnz YClearLoop ret CheckBouncingSpritesStart: comp sp0y , #$FF rtnz load sp0y , #11 load sp1y , #22 load sp2y , #33 load sp3y , #44 load sp4y , #55 load sp5y , #66 load sp6y , #77 load sp7y , #88 load sp0x , #11 load sp1x , #22 load sp2x , #33 load sp3x , #44 load sp4x , #55 load sp5x , #66 load sp6x , #77 load sp7x , #88 load sp0m , DOWNRIGHT load sp1m , DOWNRIGHT load sp2m , DOWNRIGHT load sp3m , DOWNRIGHT load sp4m , DOWNRIGHT load sp5m , DOWNRIGHT load sp6m , DOWNRIGHT load sp7m , DOWNRIGHT ret DrawBouncingSprites: load tempReg0 , #$10 load tempReg1 , #$B000 FillYLoop: load tempReg2 , (tempReg0) out tempReg2 , tempReg1 add tempReg0 , #1 add tempReg1 , #4 comp tempReg0 , #$18 jpnz FillYLoop load tempReg0 , #$18 load tempReg1 , #$B003 FillXLoop: load tempReg2 , (tempReg0) out tempReg2 , tempReg1 add tempReg0 , #1 add tempReg1 , #4 comp tempReg0 , #$20 jpnz FillXLoop load tempReg0 , #$20 load tempReg1 , #$B002 FillMLoop: load tempReg2 , (tempReg0) out tempReg2 , tempReg1 add tempReg0 , #1 add tempReg1 , #4 comp tempReg0 , #$28 jpnz FillMLoop load tempReg0 , #$04 load tempReg1 , #$B001 FillPatternLoop: out tempReg0 , tempReg1 add tempReg1 , #4 comp tempReg1 , #$B021 jpnz FillPatternLoop ret DoPaletteChange: load swReg , #$40 load callReg , #ChangePalettes load clearReg , #SetDefaultPalettes jump DoFunction ChangePalettes: add palDelReg, #1 comp palDelReg, #$10 rtnz load palDelReg, #0 load tempReg0 , #$A600 load tempReg2 , PALREGS ChangePalettesLoop: comp tempReg2 , #$30 jpz NextPalette comp tempReg2 , #$34 jpz NextPalette comp tempReg2 , #$38 jpz NextPalette comp tempReg2 , #$3C jpz NextPalette comp tempReg2 , #$40 jpz NextPalette comp tempReg2 , #$44 jpz NextPalette comp tempReg2 , #$48 jpz NextPalette comp tempReg2 , #$4C jpz NextPalette load tempReg1 , (tempReg2) add tempReg1 , #1 stor tempReg1 , (tempReg2) out tempReg1 , tempReg0 NextPalette: add tempReg0 , #1 add tempReg2 , #1 comp tempReg0 , #$A620 jpnz ChangePalettesLoop ret SetDefaultPalettes: load tempReg0 , #$A600 load tempReg3 , PALREGS load tempReg1 , #0 SetDefaultPalettesLoop: out tempReg1 , PALETTETBL in tempReg2 , ROMDATA out tempReg2 , tempReg0 stor tempReg2 , (tempReg3) add tempReg1 , #1 add tempReg0 , #1 add tempReg3 , #1 comp tempReg0 , #$A620 jpnz SetDefaultPalettesLoop ret ;------------------------------------Sprite Mirroring Routines------------------------------------- DoSpriteMirroring: load swReg , #$80 ;Switch 8 controls the sprite mirroring. load callReg , #SpriteMirror ;Mirroring entry function. load clearReg , #ClearSpriteMirror ;Clear mirroring sprites. jump DoFunction ; SpriteMirror: add mirDelReg, #1 ; comp mirDelReg, #$04 ;Update mirroring sprites every 4th frame. rtnz ; load tempReg0 , #$B020 ;Set address to PPU mirroring sprite RAM. SpriteLoadLoop: out mirPtrReg, SPRITETBL in tempReg1 , ROMDATA out tempReg1 , tempReg0 add mirPtrReg, #1 add tempReg0 , #1 and mirPtrReg, #$FF comp mirPtrReg, #$40 jpz FinishSpriteLoadLoop comp mirPtrReg, #$80 jpz FinishSpriteLoadLoop comp mirPtrReg, #$C0 jpz FinishSpriteLoadLoop comp mirPtrReg, #$00 jpz FinishSpriteLoadLoop jump SpriteLoadLoop FinishSpriteLoadLoop: load mirDelReg, #0 ret ClearSpriteMirror: load tempReg0 , #$B020 load tempReg1 , #$FF ClearSpriteMirrorLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$B060 jpnz ClearSpriteMirrorLoop load mirDelReg, #0 load mirPtrReg, #0 ret ;--------------------------------------Audio Sprite Routines--------------------------------------- DoSpriteAudio: load swReg , #$02 ;2nd switch controls audio sprites. load callReg , #SpriteAudio ;Audio sprite entry function. load clearReg , #ClearSpriteAudio ;Clear audio sprites function. jump DoFunction ; SpriteAudio: load tempReg0 , #$A000 load tempReg1 , #$78 AudioBackgroundTopLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A020 jpnz AudioBackgroundTopLoop load tempReg1 , #$79 AudioBackgroundMidLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A1A0 jpnz AudioBackgroundMidLoop load tempReg1 , #$7A AudioBackgroundBotLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A1C0 jpnz AudioBackgroundBotLoop call DisplayAudioSprites ;Draw audio sprites on the display. call DisplayMag ;Draw magnification factor on display. ret ; ClearSpriteAudio: load tempReg1 , #$FF ;Blank sprite. load tempReg0 , #$A000 ; ClearSpriteAudioLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A1C0 jpnz ClearSpriteAudioLoop out tempReg1 , tempReg0 ; add tempReg0 , #1 ;Clear magnification factor from display. out tempReg1 , tempReg0 ; add tempReg0 , #1 ; out tempReg1 , tempReg0 ; load tempReg0 , PPUAUDSPSTART ;Base address in PPU sprite RAM. load tempReg1 , #$FF ;Move sprite off screen. RemoveAudioSprites: out tempReg1 , tempReg0 ; add tempReg0 , #1 ;Loop to write #$FF into all--> comp tempReg0 , PPUAUDSPEND ;audio sprite RAM. This will--> jpnz RemoveAudioSprites ;move the sprites off screen. ret ; DisplayAudioSprites: load tempReg0 , PPUAUDSPSTART ;Base address in PPU sprite RAM. load tempReg1 , #0 ;Sprite X location. load tempReg2 , SPRITEREGS ;Base address in CPU audio sprite RAM. load tempReg3 , #$A0 ;Audio sprite pattern table address. DisplayAudioSpritesLoop: load miscReg , (tempReg2) ;Get sprite audio data from CPU memory. xor miscReg , #$007F ;Compute proper positon on display. sub miscReg , #$10 ; out miscReg , tempReg0 ;Set sprite Y position in PPU RAM. add tempReg0 , #1 ;Set sprite pattern in PPU RAM. out tempReg3 , tempReg0 ; add tempReg0 , #1 ;Set property bit in PPU RAM. load miscReg , #2 ;No flipping, foreground sprite,--> out miscReg , tempReg0 ;pallette %$10. add tempReg0 , #1 ;Store sprite X position in PPU RAM. out tempReg1 , tempReg0 ; add tempReg2 , #1 ;Move to next sprite in CPU memory. add tempReg1 , #2 ;Move x by 2 pixels for next sprite. add tempReg0 , #1 ;Move to next sprite in PPU RAM. comp tempReg0 , PPUAUDSPEND ;Check if more sprites to process(128 total). jpnz DisplayAudioSpritesLoop ;Loop if more sprites to process. ret ; DisplayMag: comp micSmpReg, #$0200 jpnz Check02X load tempReg1 , #$78 load tempReg2 , #$01 load tempReg3 , #$21 Check02X: comp micSmpReg, #$0100 jpnz Check04X load tempReg1 , #$78 load tempReg2 , #$02 load tempReg3 , #$21 Check04X: comp micSmpReg, #$0080 jpnz Check08X load tempReg1 , #$78 load tempReg2 , #$04 load tempReg3 , #$21 Check08X: comp micSmpReg, #$0040 jpnz Check16X load tempReg1 , #$78 load tempReg2 , #$08 load tempReg3 , #$21 Check16X: comp micSmpReg, #$0020 jpnz Check32X load tempReg1 , #$01 load tempReg2 , #$06 load tempReg3 , #$21 Check32X: comp micSmpReg, #$0010 jpnz LoadMag load tempReg1 , #$03 load tempReg2 , #$02 load tempReg3 , #$21 LoadMag: load tempReg0 , #$A000 out tempReg1 , tempReg0 add tempReg0 , #1 out tempReg2 , tempReg0 add tempReg0 , #1 out tempReg3 , tempReg0 ret GetAudioData: load micDelReg, #0 ;Zero the mic delay register. load audPtrReg, SPRITEREGS ;Get base address of audio sprites RAM. in audHldReg, MICDATA ;Get audio input data. asl audHldReg ;Check if mag button depressed. clc MagChangeButtonPushed ;If so, change magnification. in audHldReg, MICDATA asl audHldReg clnc MagChangeButtonReleased GetAudioLoop: add audCtrReg, #1 ;Delay to for specified sampling time. comp audCtrReg, micSmpReg ;Check if tie for another sample. jpnz GetAudioLoop load audCtrReg, #0 in audHldReg, MICDATA ;Get audio data from port. and audHldReg, #$0FFF ;Keep only audio data bits. lsr audHldReg ; lsr audHldReg ;Keep only upper 7 bits. lsr audHldReg ; lsr audHldReg ; lsr audHldReg ; sub audHldReg, #8 stor audHldReg, (audPtrReg) add audPtrReg, #1 comp audPtrReg, ENDAUDIOREGS jpnz GetAudioLoop load audPtrReg, #0 ret MagChangeButtonReleased: load micStaReg, #0 ret MagChangeButtonPushed: rol micStaReg jpc DebounceDone load micStaReg, #$8000 ret DebounceDone: ror micStaReg ror micStaReg clnc ChangeMag load micStaReg, #$8001 ret ChangeMag: comp micSmpReg, #$0200 ;If at 1x magnification, --> jpz ChangeTo2X ;change to 2x magnification. comp micSmpReg, #$0100 ;If at 2x magnification, --> jpz ChangeTo4X ;change to 4x magnification. comp micSmpReg, #$0080 ;If at 4x magnification, --> jpz ChangeTo8X ;change to 8x magnification. comp micSmpReg, #$0040 ;If at 8x magnification, --> jpz ChangeTo16X ;change to 16x magnification. comp micSmpReg, #$0020 ;If at 16x magnification, --> jpz ChangeTo32X ;change to 32x magnification. comp micSmpReg, #$0010 ;If at 32x magnification, --> jump ChangeTo1X ;change to 1x magnification. ChangeTo1X: load micSmpReg, #$0200 ;Change to 1x magnification. ret ; ChangeTo2X: load micSmpReg, #$0100 ;Change to 2x magnification. ret ; ChangeTo4X: load micSmpReg, #$0080 ;Change to 4x magnification. ret ; ChangeTo8X: load micSmpReg, #$0040 ;Change to 8x magnification. ret ; ChangeTo16X: load micSmpReg, #$0020 ;Change to 16x magnification. ret ; ChangeTo32X: load micSmpReg, #$0010 ;Change to 32x magnification. ret ; ;-------------------------------------------------------------------------------------------------- DoAttribChange: load swReg , #$10 load callReg , #AttributeTable load clearReg , #ClearAttributeTable jump DoFunction AttributeTable: add atDelReg , #1 comp atDelReg , #8 rtnz load atDelReg , #0 add atStatReg, #1 comp atStatReg, #4 clz ResetAttributeReg load tempReg0 , #$A580 SetAttributeTableLoop: comp atStatReg, #0 jpnz NextCheck1 load tempReg1 , AT0 NextCheck1: comp atStatReg, #1 jpnz NextCheck2 load tempReg1 , AT1 NextCheck2: comp atStatReg, #2 jpnz NextCheck3 load tempReg1 , AT2 NextCheck3: comp atStatReg, #3 jpnz FinishCheck load tempReg1 , AT3 FinishCheck: out tempReg1, tempReg0 add tempReg0 , #1 comp tempReg0 , #$A5A0 jpnz SetAttributeTableLoop ret ResetAttributeReg: load atStatReg, #0 ret ClearAttributeTable: load tempReg0 , #$A580 load tempReg1 , #0 ClearAttributeTableLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A5A0 jpnz ClearAttributeTableLoop ret DoSpritePriority: load swReg , #$20 load callReg , #UpdateSpritePriority load clearReg , #ClearSpritePriority jump DoFunction ;anDelReg, samROMReg, samXReg, movDelReg ;samM0Reg, samM1Reg, samM2Reg UpdateSpritePriority: load tempReg0 , #$A33F load tempReg1 , #$7C DrawPillarsLoop: add tempReg0 , #3 out tempReg1 , tempReg0 add tempReg0 , #1 out tempReg1 , tempReg0 comp tempReg0 , #$A3BF jpnz DrawPillarsLoop add anDelReg , #1 add movDelReg , #1 call CheckSamusMovement call CheckSamusAnimation DrawSamus: load tempReg0 , #$B0D0 load tempReg1 , samROMReg GetSamusROMLoop: out tempReg1 , PALETTETBL in tempReg2 , ROMDATA out tempReg2 , tempReg0 add tempReg0 , #1 add tempReg1 , #1 out tempReg1 , PALETTETBL in tempReg2 , ROMDATA out tempReg2 , tempReg0 add tempReg0 , #3 add tempReg1 , #1 comp tempReg0 , #$B100 jpnz GetSamusROMLoop load tempReg0 , samXReg LoadSamusMX: out samM0Reg , #$B0D2 out tempReg0 , #$B0D3 out samM0Reg , #$B0DA out tempReg0 , #$B0DB out samM0Reg , #$B0E2 out tempReg0 , #$B0E3 out samM0Reg , #$B0EE out tempReg0 , #$B0EF add tempReg0 , #8 out samM1Reg , #$B0D6 out tempReg0 , #$B0D7 out samM1Reg , #$B0DE out tempReg0 , #$B0DF out samM1Reg , #$B0E6 out tempReg0 , #$B0E7 out samM1Reg , #$B0F2 out tempReg0 , #$B0F3 add tempReg0 , #8 out samM2Reg , #$B0EA out tempReg0 , #$B0EB out samM2Reg , #$B0F6 out tempReg0 , #$B0F7 ret CheckSamusMovement: comp movDelReg, #2 jpz UpdateSamusPosition ret CheckSamusAnimation: comp anDelReg , #8 jpz UpdateSamusAnimation ret UpdateSamusAnimation: add samROMReg, #$18 comp samROMReg, #$A0 clz ResetSamusROMReg load anDelReg , #0 ret ResetSamusROMReg: load samROMReg, #$40 ret UpdateSamusPosition: load movDelReg, #0 sub samXReg , #1 and samXReg , #$FF load tempReg0 , samXReg comp tempReg0 , #$20 clz SwitchM0Priority comp tempReg0 , #$40 clz SwitchM0Priority comp tempReg0 , #$60 clz SwitchM0Priority comp tempReg0 , #$80 clz SwitchM0Priority comp tempReg0 , #$A0 clz SwitchM0Priority comp tempReg0 , #$C0 clz SwitchM0Priority comp tempReg0 , #$E0 clz SwitchM0Priority add tempReg0 , #8 comp tempReg0 , #$20 clz SwitchM1Priority comp tempReg0 , #$40 clz SwitchM1Priority comp tempReg0 , #$60 clz SwitchM1Priority comp tempReg0 , #$80 clz SwitchM1Priority comp tempReg0 , #$A0 clz SwitchM1Priority comp tempReg0 , #$C0 clz SwitchM1Priority comp tempReg0 , #$E0 clz SwitchM1Priority add tempReg0 , #8 comp tempReg0 , #$20 clz SwitchM2Priority comp tempReg0 , #$40 clz SwitchM2Priority comp tempReg0 , #$60 clz SwitchM2Priority comp tempReg0 , #$80 clz SwitchM2Priority comp tempReg0 , #$A0 clz SwitchM2Priority comp tempReg0 , #$C0 clz SwitchM2Priority comp tempReg0 , #$E0 clz SwitchM2Priority ret SwitchM0Priority: xor samM0Reg , #$20 ret SwitchM1Priority: xor samM1Reg , #$20 ret SwitchM2Priority: xor samM2Reg , #$20 ret ClearSpritePriority: load tempReg0 , #$A320 load tempReg1 , #$FF ClearPillarsLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$A3C0 jpnz ClearPillarsLoop load tempReg0 , #$B0D0 ClearWalkingSpritesLoop: out tempReg1 , tempReg0 add tempReg0 , #1 comp tempReg0 , #$B100 jpnz ClearWalkingSpritesLoop load samROMReg, #$40 load samXReg , #$E5 load samM0Reg , #$03 load samM1Reg , #$03 load samM2Reg , #$03 ret
NMPSM3.jar (Download)
NMPSM3.bat
java -jar NMPSM3.jar program.asm @echo off pause
program.coe
memory_initialization_radix = 16; memory_initialization_vector = 100000005,100000028,100000038,100000052,100000052,230000022,2300001FE,230000262, 230000035,230000050,010950080,0106D0040,0106E00E5,010900003,010910003,010920003, 010590011,010500005,530500010,530500011,0118000D9,531800200,A60000000,A90000000, AC0000000,8C0040001,190000019,B90000000,010040001,6C0930001,8C0930003,2C00002F4, AC0000000,100000019,0100003FF,010010000,0D0010000,790000001,160000024,3.6, 530010001,4C0500012,600500000,2C0000035,530010001,4C0500012,530500010,5.3亿, 4C0500012, 530500020、6C0010001、6C0000001、460460、010000000、010010000、360000000, 8C0020020,2C0000050,040500002,010520024,23000004A,6C0500001,010520025,23000004A, 6C0500001,010520026,23000004A,6C0500001,010520027,23000004A,0105000B0,530500011, 6C0020001,4.6亿,530500002,4C0510012,530510003,4C0510012,560510052,3.6亿, 010020000, 3.6亿,010040000,2300000E8,230000073,23000016C,23000017F,23000023F, 23000026F,230000291,230000331,230000357,230000067,4.6亿,4C0030013,5C003006B, 90003006B,190000063,100000064,130690000,1306A0000,4C0030013,100000060,23000006A, 230000071,3.6亿, 4C1810003、8C1810000、3C0000000、531810021、531810201、531810204、10000006A, 530500202、360000000、0106B0001、010690077、0106A00E4、10000005E,4C0500033, 600500000,29000009D,600500000,2C00000A3,4C0500032,5905000F0,2900000A9,5905000F0, 2C00000B5,4C0500030,2300000BD,01057A29B,2300000C2,4C0500030,5905000F0,01057A296, 2300000C2,4C0500031,2300000BD,01057A28F,2300000C2,4C0500031,5905000F0,01057A28A, 2300000C2, 4C0500032,2300000BD,01057A283,2300000C2,2300000D1,040500058,8C0500000, 2C00000DA,040500058,8C0500000,2900000DF,3.6亿,01050006F,53050A288,53050A294, 53050A2E8,53050A2F4,3.6亿,0105000FF,53050A288,53050A294,53050A2E8,53050A2F4, 3.6亿,010500044, 53050A280,01050004D, 53050A281,010500050,53050A2A0,010500047,53050A2A1,53050A2C1,010500055,53050A2E1,360000000,0105000FF,53050A280,53050A281, 53050A2A0,53050A2A1,53050A2C1,53050A2E1,3.6亿,930500000,930500000,930500000, 930500000,3.6亿,010540004,010550004,530500004,4C0560012,560560057,6C0500001, 6C0570001,790540001,1600000C4,010540004,790550001,6C057001C,600550000,3C0000000, 1000000C4, 040500059,4C0510032,0A0510059,8C0500011,3.9亿,8C0510012,3.9亿, 6605800FF,3.6亿,01051000A,530510041,0105100FF,530510042,3.6亿,0105100FF, 530510041,010510019,530510042,3.6亿,0105AA2FF,0105BA27F,230000166,3.6亿, 0106B0000,010690112, 0106A010D,230000065、0106B0001、010690116、0106A011B,23000005E, 0106B0002、01069011F,0106A0124、23000005E,0106B0004、010690128、0106A012D,23000005E, 0106B0008,010690131,0106A0136,23000005E,0106B0010,01069013A,0106A013F,23000005E, 0106B0020,010690143,0106A0148,23000005E,0106B0040,01069014C,0106A0151,23000005E, 0106B0080,010690155,0106A015A,23000005E,3.6亿,0105C0015,0105AA1F5,0105BA1DF, 23000015E, 360000000、0105AA1F5、0105BA1DF,230000166、360000000、0105C0020、0105AA20A,0105BA1FF,23000015E,360000000、0105AA20A, 0105BA1FF ,230000166、360000000、0105C002C,0105AA21B,0105BA20F, 23000015E,360000000、0105AA2000, 0105BA21F,23000015E, 360000000、0105AA229、0105BA21F,230000166、360000000、0105C0046、0105AA23F,0105BA22F,23000015E,360000000、0105AA23F,0105BA22F, 230000166,3.6亿,0105C0055,0105AA24E,0105BA23F,23000015E,3.6亿,0105AA24E, 0105BA23F,230000166,3.6亿,0105C0064,0105AA25E,0105BA24F,23000015E,3.6亿, 0105AA25E,0105BA24F,230000166,3.6亿,0105C0072,0105AA26D,0105BA25F,23000015E, 3.6亿, 0105AA26D,0105BA25F,230000166,3.6亿,0105C0082,0105AA27F,0105BA26F, 23000015E,3.6亿,0105AA27F,0105BA26F,230000166,3.6亿,5305C0005,4C0500012, 56050005A,7905A0001,7905C0001,9005A005B,16000015E,3.6亿,0105C00FF,5605C005A, 7905A0001,9005A005B, 160000166、360000000、4C0030013、590030004、8C0030004、2C0000173、8C0030004、29000017B, 360000000、6C05D0001、8C05D0020、2C0000178、5305EA700、360000000, 6C05E0001,0105D0000,3.6亿,0105E0000,5305EA700,0105D0000,3.6亿,0106B0008, 010690185,0106A01FE,23000005E,230000220,3.6亿,230000205,010500020,070530050, 8C0530060,2C00001A4,8C0530020,2C0000194,8C05300E0,2C00001C4,8C05300A0,2C00001B4, 6C0500001, 8C0500028,160000187,3.6亿,2300001D4,8C05F0001,1900001F2,2300001E9, 8C05F0001,1900001FB,040510050,790510008,070520051,6C0520001,0D0520051,790510008, 070520051,790520001,0D0520051,3.6亿,2300001D4,8C05F0001,1900001F5,2300001E2, 8C05F0001,1900001F8, 040510050、790510008、070520051、790520001、0D0520051、790510008、070520051、790520001、0D0520051、360000000、2300001DB ,8C05F0001、1900001F8、2300001E9, 8C05F0001,1900001F5,040510050,790510008,070520051,6C0520001,0D0520051,790510008, 070520051,6C0520001,0D0520051,3.6亿,2300001E2,8C05F0001,1900001F2,2300001DB, 8C05F0001,1900001FB,040510050,790510008,070520051,790520001,0D0520051,790510008, 070520051, 6C0520001,0D0520051,3.6亿,040510050,790510010,070520051,8C0520000, 1900001F0,0105F0000,3.6亿,040510050,790510010,070520051,8C05200E7,1900001F0, 0105F0000,3.6亿,040510050,790510008,070520051,8C0520000,1900001F0,0105F0000, 3.6亿,040510050, 790510008、070520051、8C05200F7、1900001F0、0105F0000、360000000、0105F0001、360000000、0105100A0、0D0510050、360000000、0105100E0、0D0510050、360000000 , 010510020,0D0510050,3.6亿,010510060,0D0510050,3.6亿,01050000F,0105100FF, 6C0500001,0D0510050,8C0500017,160000200,3.6亿,8C01000FF,3.9亿,01010000B, 010110016,010120021,01013002C,010140037,010150042,01016004D,010170058,01018000B, 010190016, 0101A0021,0101B002C,0101C0037,0101D0042,0101E004D,0101F0058,0102000A0, 0102100A0,0102200A0,0102300A0,0102400A0,0102500A0,0102600A0,0102700A0,3.6亿, 010500010,01051B000,070520050,560520051,6C0500001,6C0510004,8C0500018,160000222, 010500018,01051B003, 070520050、560520051、6C0500001、6C0510004、8C0500020、16000022A ,010500020、01051B002、070520050、560520051、6C0500001、6C0510004、8C0500028、160000232, 010500004,01051B001,560500051,6C0510004,8C051B021,16000023A,3.6亿,0106B0040, 010690243,0106A0262,10000005E,6C0600001,8C0600010,3.9亿,010600000,01050A600, 010520030,8C0520030,19000025D,8C0520034,19000025D,8C0520038,19000025D,8C052003C, 19000025D, 8C0520040,19000025D,8C0520044,19000025D,8C0520048,19000025D,8C052004C, 19000025D,070510052,6C0510001,0D0510052,560510050,6C0500001,6C0520001,8C050A620, 160000249,3.6亿,01050A600,010530030,010510000,530510006,4C0520012,560520050, 0D0520053,6C0510001, 6C0500001、6C0530001、8C050A620、160000265、360000000、0106B0080、010690273、0106A0288、10000005E ,6C0610001、8C0610004、390000000、0150B020、530620007, 4C0510012,560510050,6C0620001,6C0500001,5906200FF,8C0620040,190000286,8C0620080, 190000286,8C06200C0,190000286,8C0620000,190000286,100000277,010610000,3.6亿, 01050B020,0105100FF,560510050,6C0500001,8C050B060,16000028A,010610000,010620000, 3.6亿, 0106B0002,010690295,0106A02A8,10000005E,01050A000,010510078,560510050, 6C0500001,8C050A020,160000297,010510079,560510050,6C0500001,8C050A1A0,16000029C, 01051007A,560510050,6C0500001,8C050A1C0,1600002A1,2300002BA,2300002CF,3.6亿, 0105100FF,01050A000, 560510050、6C0500001、8C050A1C0、1600002AA, 560510050、6C0500001、560510050、6C0500001、560510050、01050B100、0105100FF,560510050、6C0500001、8C050B300, 1600002B5,3.6亿,01050B100,010510000,010520100,0105300A0,070660052,66066007F, 790660010,560660050,6C0500001,560530050,6C0500001,010660002,560660050,6C0500001, 560510050,6C0520001,6C0510002,6C0500001,8C050B300,1600002BE,3.6亿,8C0950200, 1600002D4, 010510078,010520001,010530021,8C0950100,1600002D9,010510078,010520002, 010530021,8C0950080,1600002DE,010510078,010520004,010530021,8C0950040,1600002E3, 010510078,010520008,010530021,8C0950020,1600002E8,010510001,010520006,010530021, 8C0950010,1600002ED, 010510003,010520002,010530021,01050A000,560510050,6C0500001, 560520050,6C0500001,560530050,3.6亿,010930000,010630100,4C0650034,930650000, 330000310,4C0650034,930650000,30000030E,6C0640001,900640095,1600002FC,010640000, 4C0650034,590650FFF,990650000,990650000,990650000,990650000,990650000,790650008, 0D0650063,6C0630001,8C0630180,1600002FC,010630000,3.6亿,010940000,3.6亿, 960940000, 200000314,010948000,3.6亿,9C0940000,9C0940000,300000319,010948001, 3.6亿,8C0950200,190000327,8C0950100,190000329,8C0950080,19000032B,8C0950040, 19000032D,8C0950020,19000032F,8C0950010,100000325,010950200,3.6亿,010950100, 3.6亿,010950080, 3.6亿,010950040,3.6亿,010950020,3.6亿,010950010, 3.6亿,0106B0010,010690335,0106A0350,10000005E,6C0670001,8C0670008,3.9亿, 010670000,6C0680001,8C0680004,2C000034E,01050A580,8C0680000,160000340,01051001B, 8C0680001,160000343,0105100C6,8C0680002,160000346,0105100B1,8C0680003,160000349, 01051006C,560510050,6C0500001,8C050A5A0,16000033D,3.6亿,010680000,3.6亿, 01050A580, 010510000,560510050,6C0500001,8C050A5A0,160000352,3.6亿,0106B0020, 01069035B,0106A03D1,10000005E,01050A33F,01051007C,6C0500003,560510050,6C0500001, 560510050,8C050A3BF,16000035D,6C06C0001,6C06F0001,23000038D,230000390,01050B0D0, 04051006D,530510006, 4C0520012、560520050、6C0500001、6C0510001、530510006、4C0520012、560520050、6C0500003、6C0510001、8C050B100、160000369、04050006E ,53090B0D2、53050B0D3, 53090B0DA,53050B0DB,53090B0E2,53050B0E3,53090B0EE,53050B0EF,6C0500008,53091B0D6, 53050B0D7,53091B0DE,53050B0DF,53091B0E6,53050B0E7,53091B0F2,53050B0F3,6C0500008, 53092B0EA,53050B0EB,53092B0F6,53050B0F7,3.6亿,8C06F0002,19000039A,3.6亿, 8C06C0008, 190000393、360000000、6C06D0018、8C06D00A0、2C0000398、0106C0000、360000000、0106D0040、360000000、0106F0000、7906E0001、5906E00FF,04050006E,8C0500020、2C00003CB,8C0500040、2C00003CB,8C0C0C, 0C0C0C,0C0C0C,0C0C0C, 0C0C0C,0C0C0C,0C0C0C,0C0C0C,0C0C0C,0C0C0C,0C0C0C,0C0C0C, 0C0C0C,0C0C0C0C05000C 8C05000E0、2C00003CB,6C0500008、8C0500020、2C00003CD,8C0500040、2C00003CD, 8C0500060、2C00003CD,8C0500080、2C00003CD,8C05000A0、2C00003CD,8C05000C0, 2C00003CD,8C05000E0,2C00003CD,6C0500008,8C0500020,2C00003CF,8C0500040,2C00003CF, 8C0500060,2C00003CF,8C0500080,2C00003CF,8C05000A0,2C00003CF,8C05000C0,2C00003CF, 8C05000E0,2C00003CF,3.6亿,660900020,3.6亿,660910020,3.6亿,660920020, 3.6亿, 01050A320,0105100FF,560510050,6C0500001,8C050A3C0,1600003D3,01050B0D0, 560510050,6C0500001,8C050B100,1600003D8,0106D0040,0106E00E5,010900003,010910003, 010920003,3.6亿,000000000,000000000,000000000,000000000,000000000,000000000, 000000000,000000000, 000000000,000000000,000000000,000000000,000000000,000000000, 000000000,000000000,000000000,000000000,000000000,000000000,000000000,000000000, 000000000,000000000,000000000,000000000,000000000,000000000,000000000,000000000;