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Abstract

System-level design methodology and supporting tools havebeen developed to address the
complexity of embedded systems and to achieve shorter time-to-market. Modeling a complex
system at higher level of abstraction has benefits of faster design space exploration and enables
the path to automatic generation of low level models that connect with actual implementation.
One trade-off of system models is related to the amount of captured implementation detail.
Abstracting more details results in faster simulations, while preserving more details results in
more accurate estimation. This work presents a case study ofa manual implementation of a
real-time MP3 decoder on FPGA, to identify system features that are important for modeling.
Our experimental results show that cache configuration, interrupt overhead and compiler op-
timization options significantly influence system performance. Therefore, it is advantageous to
include the timing effect of these features in a system model.
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Abstract

System-level design methodology and supporting tools have been developed to address the com-
plexity of embedded systems and to achieve shorter time-to-market. Modeling a complex system at
higher level of abstraction has benefits of faster design space exploration and enables the path to
automatic generation of low level models that connect with actual implementation. One trade-off of
system models is related to the amount of captured implementation detail. Abstracting more details
results in faster simulations, while preserving more details results in more accurate estimation. This
work presents a case study of a manual implementation of a real-time MP3 decoder on FPGA, to
identify system features that are important for modeling. Our experimental results show that cache
configuration, interrupt overhead and compiler optimization options significantly influence system
performance. Therefore, it is advantageous to include the timing effect ofthese features in a system
model.

1 Introduction

Embedded systems are widely used today in various fields such as automobile industry, multimedia
applications and medical applications. As complexity of embedded systems increases, traditional
manually implementation’s are no longer feasible. To cope with the problem, system-level design
methodology and supporting tools are developed. Modeling systems with higher abstraction level
enables fast design space exploration and hardware/software partitioning.
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One essential aspect of system level design methodology is a sufficiently comprehensive model
to capture necessary characteristics of the system at a high abstraction level. Timing accuracy is
usually an important property we want to observe from these models, because timing accuracy is
important to guarantee close relation between model and implementation. However, better estimated
timing requires more detailed models, which result in slower simulations. This paper describes a
case study of manually adapting an MP3 decoder reference source code for execution on an embed-
ded system while meeting real-time constraints. The goal of this work is to identifysome important
model features that are necessary for expressive and accurate system simulations to accurately guide
design space exploration.

MP3 decoder is a representative industrial multimedia application. MP3 is a popular audio
compression scheme that can achieve 90% or more compression rate. A MP3stream is composed
of generally independent frames, each of which has its own header andaudio information. It is
computation consuming to decode MP3 stream during music play back. MP3 decoding poses real-
time requirements for timely decoding of MP3 frames. By implementing such a decoder manually
on FPGA, we are able to explore architectural and software alternativesof the design. From the
experimental results, we identify desirable model features for more accurate modeling at an abstract
level.

In following section, some work related with this study is introduced. Section 3 gives a brief
description of MP3 decoder. Section 4 outlines the design platform used, the Altera DE2 board.
Section 5 describes the main implementation work by adapting a decoder for desktop machines to
embedded system. Section 6 discusses the design space exploration we performed to find suitable
design choices. Finally, section 7 concludes this paper.

2 Related Work

Transaction-level modeling is emerging as a high-level modeling approach todeal with the rising
complexity of embedded systems. System-level design methodology has been studied extensively
via using the transaction level modeling language of SpecC or SystemC.

Chandraiah et al. [2] have used MP3 audio decoder as an example to show the benefits of
automated SoC design based on SpecC methodology. They first developeda specification model in
system-level design language of SpecC from source C code manually, then performed automated
architecture and communication exploration with a supporting tool SoC Environment (SCE) [3],
and finally the refined model can be synthesized into software binary that can run on an Instruction
Set Simulator (ISS). Their work, however, did not take caches into account.

Yu et al. [8] have developed a tool for automatic generation of TLM, usingMP3 decoder as an
example. With custom communication platforms and the decoder source code in C, they have gen-
erated SystemC TLM, which is ready for simulation. Their TLM includes communication models
of bus and bridge.

Papakonstantinou et al. [6] have implemented a floating-point MP3 decoderon FPGA. By im-
plementing floating point accelerators as custom instructions in Nios2 processor, they have achieved
real-time decoding of MP3 data. Their work focused on accelerator designs, while our work focuses
on overall system performance.
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3 Design Drive: MP3 Decoder

MPEG-1 Audio Layer 3 (MP3) is a very efficient audio compression scheme. It can achieve more
than 90% compression while keeping high quality of sound. Due to this reason, MP3 format is
widely used in our daily life and a MP3 decoder can be a representative industrial multimedia
application.

A MP3 decoder takes MP3 stream as input and generates PCM samples as output. A MP3 stream
is composed of frames. Each frame contains 1152 encoded PCM samples. Aframe consists of four
main parts: header, side information, main data and ancillary data (Figure 1).The header begins
with 12-bit sync-word indicating the starting point of each frame, and it alsocontains information
about the layer, bitrate, sampling frequency and stereo mode. Side information contains necessary
information to decode main data. Main data contains the coded scale factors and the Huffman coded
frequency lines. Ancillary data contains some user-defined data such asidentifying tag information.
In our study, a sampling rate of 48 KHz is used. Thus, in order to decodingin real-time, each frame
must be decoded in 24 ms (1152 samples per frame divided by 48 KHz).

Figure 1: MP3 frame format [5]

Figure 2 shows the decoder data flow. The incoming data stream is read as individual frames
(indicated by sync-word) and the correctness of each frame is checked. After Huffman decod-
ing, requantization and reordering, the encoded audio samples are fed tothe stereo decoder, which
supports both MS stereo and intensity stereo formats. The alias reduction block then reduces the
unavoidable aliasing effects of the encoding polyphase filter bank. Next,the IMDCT block con-
verts the frequency domain samples to frequency subband samples. Finally, the polyphase filter
bank transforms samples from different frequency subbands into PCMsamples, which is ready to
be played back through an audio codec.

4 Design Environment

FPGAs are a very popular means for computing and prototyping. They provide great design flex-
ibility, fast turnaround time and simpler design flow. For these reasons, we choose FPGA as our
design environment. Particularly, Altera DE2 board is used as our experiment platform. It hosts
Cyclone II EP2C35 FPGA, SDRAM, SRAM, flash memory, SD memory card slot, 24-bit Audio
codec (WM8731), VGA codec, LEDs and other components. Cyclone IIis a low-cost FPGA, which
has a capacity of 33,216 logical-elements and 105 M4K RAM blocks. The components we are us-
ing besides Cyclone II are: SDRAM and SRAM for storing data and instructions, audio codec for
converting PCM samples to analog signals, and the SD card socket for input.

Nios II EDS tool set is used for the implementation. A general Nios II system design flow starts
with defining and generating the system in SOPC Builder, where standard hardware components
and a proper Nios II core are configured. Then the whole system is synthesized using Quartus2,
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Figure 2: MP3 decoder block diagram [5]

which can produce two files. One is an SOPC system file (.ptf) which is needed by Nios2 IDE to
compile any software to target hardware system, and the other is a SRAM Object File (.sof) which is
the compiled hardware description of the system and ready to be downloaded to target board. With
the generated system, we can develop our software application and run/debug on an ISS or directly
on board. Often we may find the generated system does not fulfill all the requirements, such as
memory capacity or execution speed. We can iteratively go back to modify or add components in
SOPC builder and re-generate the hardware system.

It is not necessary to perform all the steps in our study. An existing system from DE2’s demon-
stration package [1], including the SOPC system file and SRAM Object File, isused as a starting
point.

4.1 System Architecture

Figure 3 presents the main components of the system. Nios2 processor version ’fast’ working at 100
MHz is selected. It is tightly connected to an instruction cache and a data cache, both of which have
configurable sizes. Nios2 communicates with the memories, SD card and audioDAC FIFO via
Avalon bus interface. The main memory consists of 512KB SRAM and 8MB SDRAM. Input MP3
stream is read from SD card. The audioDAC FIFO, an IP component, is an audio DAC controller
with 256×16 FIFO memory. The audio DAC controller provides clock generation and dataflow
control for the audio codec via serial I2C bus interface. The audio codec receives audio samples
from the FIFO and send them to its line out port to play the music.
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Figure 3: System Architecture

5 Reference Code Modifications For Embedded Constraints

Our implementation is based on Underbit MPEG audio decoder library [7]. The source code is
an implementation based on the ISO/IEC standards. It only uses fixed-pointcomputation and has
an output of 16-bit stereo PCM. Since the reference source code is a desktop application, our main
work is to design input and output routines for FPGA, and optimize for memoryusage and execution
speed.

Size constrained input: In the PC source code, an entire MP3 file is read into memory as input.
However, unlike on a PC, embedded systems usually have very limited memory; therefore it is not
safe to read an MP3 file with unbounded size in this case.

This point is illustrated again in Figure 4. The PC application reads the entire stream into a
buffer. Later, it advances the frame pointer through the buffer while decoding. Such large buffers
are not available in embedded systems. A software solution is to use a small input buffer which can
hold a few MP3 frames and read from SD card only on demand. Since the API of reading the SD
card only supports block-by-block read (512 bytes per block), it is not feasible to read the exact size
of each frame. Instead, we read several blocks at a time. Once a frame header is decoded, the size
of next frame is known. If the data left in the input buffer is less than the required frame size, we
first move the not-yet-decoded data to the beginning of input buffer, andthen read in new blocks
and place them right after the shifted old data. In this way, we maintain a small window of a few
frames and move it through large MP3 source stream.

Concurrent output : In the PC source code, the output of PCM samples is written to a file during
decoding. In our case, the audio FIFO is too small to hold an entire decodedframe. Therefore, we
need to introduce a circular software buffer between the decoder and the output FIFO. We use an
interrupt in order to fill the output FIFO in parallel to decoding the data. However, the output
FIFO implementation does not include an interrupt generation on an empty FIFO. It only provides
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Figure 4: Illustration of input routine

a pollable flag indicating full FIFO.
Our alternative is to use a periodic timer interrupt to decouple the routine for decoding and that

for output. It is feasible, because the output rate of audio codec is constant and we can know when
the FIFO will be close to empty. In this way, we can have the concurrent music output in a periodical
interrupt service routine. However, the next issue is selecting a propertimer period in order to play
back music continuously. We can firstly find out how long in real-time the music samples can be
hold in the FIFO. Knowing the FIFO has 16-bit data width, 256 in depth, duo-channels and uses a
sampling rate of 48 KHz, a calculation can be:

Length of music the FIFO can hold
= FIFO size / number of channels / sampling rate
= 256 / 2 / 48000 = 2.66 ms
The result suggests if we use a timer interrupt for continuously playing backmusic, the upper

bound of the timer interval is 2.66 ms. A smaller timer period is necessary to keep asafety margin
avoiding that the FIFO runs empty due to the interrupt latency. Choosing this safety margin has
an effect on system performance. With a too fast timer period the interruptoverhead will reduce
performance. On the other hand, a too long period - a too small safety marginmay cause an incorrect
output if the FIFO runs empty due to too long interrupt latency. In our case,the application runs
without an RTOS and avoids long critical sections that disable interrupt andthus would increase the
latency. We therefore can use a very small safety margin of only 0.06 ms. Anexperiment on the
effect of different timer period to system performance is provided in section 6.

5.1 Software Execution

Figure 5 presents the final software flow of the implementation. Program starts with initializing
timer interrupt, SD card and decoder datastructures. Decoding begins withreading and decoding
the first MP3 frame header. It checks if the whole frame exists in the input buffer; if not, read more
source data from SD card. Then each frame is decoded and the output of PCM data is stored in an
output buffer. The output buffer is processed by the timer interrupt routine, which writes the PCM
samples to the audio FIFO and releases the buffer space. In parallel, the FIFO forwards the data to
audio codec which plays the music.
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Figure 5: Software Flow Chart

6 Design Space Exploration

In order to find suitable configurations for the system, design space explorations are necessary to be
performed. The most important issue during the implementation is to achieve real-time decoding.
We focus for our experiments on the single core architecture with one Nios processor, an output
FIFO, and vary the memory configuration. A test based on the initial system configuration shows
that it take 800% of real-time to decode a music sample (e.g. 8 sec decoding time for 1 sec of
music) with 4KB I-cache, 2KB D-cache, SDRAM as main memory and no compileroptimization.
To address this problem, we have used a faster memory, SRAM (which is off-chip and therefore
slower to access than on-chip instruction cache) to store program text, and explored the parameter
space of cache configurations, compiler optimizations and timer interrupt period.

Cache configurations: Nios2 has separated instruction and data cache. Both caches are direct-
mapped because of its efficiency on FPGA. The I-cache block size is 32 Byte. Note that the as-

7



Figure 6: Decoding time as percentage of music length in real-time when each cache parameter
changes

sociativity and I-cache block size are not configurable in the system. In addition, since Cyclone II
is a relatively small FPGA with limited RAM blocks, the cache parameter space we can search is
limited to a small scope.

Figure 6 shows the result of the cache parameter space exploration in order to fulfill real-time
requirements. We use a set of baseline parameters of 8KB I-cache, 16KB D-cache and 16B D-cache
block size, and then change one parameter at a time with other parameters constant to observe the
performance.

First we change the I-cache size. Figure 6(a) shows that decoding is slower than real-time at
4KB (129% means it takes 1.29 sec to decode 1 sec of music). It has significant improvement when
I-cache size reaches 8 KB, but stays at the same level at 16 KB. The result suggests 8KB is a proper
size for I-cache because it holds the first working set of instructions.Next, we vary the D-cache
size. Figure 6(b) shows that the decoding time steadily decreases when D-cache size increases. It
suggests the working set of data is relatively large in our application, so that it can always benefit
from larger cache size. Finally, we vary D-cache block size. As we know, larger block size will
introduce less compulsory misses but more conflict misses. Figure 6(c) shows that the negative
effect of larger block size is dominant in our case, and the performanceis better when smaller block
size is used with other parameters unchanged.

The best performance found is at the configuration of 8K I-cache, 32K D-cache, 16B D-cache
block size, when decoding is done in 64% of real-time.

Compiler optimizations: Compiler optimizations have a great impact on software perfor-
mance. As shown in Table 1, the decoding time decreases more than 40% by turning on optimiza-
tions. In addition, among all optimize options, -Os (which includes all options in -O2 and further
optimizes for size) provides the best performance, and -O3 (which usesa more aggressive inlining
alias over -O2) provides slightly worse performance than -O2. The explanation for the result is that,
the code size is having more impact on system than some other optimize options. Given a relatively
small instruction cache of 8KB, -O3, compared with -O2, inlines all functions, which increases code
size and negatively impacts cache locality in our case and therefore showsworse performance. We
see an indication for this by enabling-finline-functionsover -O2, and decoding time will be slowed
down to 5101.26 ms. Overall, we see that the compiler optimization dramatically influence system
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performance and therefore are important modeling aspect.

Optimize option Decoding time
no optimization (-O0) 115 s
optimize (-O1) 59.2 s
optimize more (-O2) 47.9 s
optimize most (-O3) 50.9 s
optimize size (-Os) 47.3 s

Table 1: Decoding time with different compiler optimizations. Test with input of 128 KB stereo
MP3 data at 128 Kbps, i.e. 7.51 second of music in real-time, and with cache configuration of 8KB
I-cache, 32KB D-cache, 16B D-cache block size

Timer period : Previously, we have calculated an upper-bound for timer period in order to
have concurrent output. Since there is latency between releasing the timer interrupt and the actual
execution of the interrupt handler (i.e. interrupt latency), a shorter timer period is needed to include
a safety margin and avoid that the FIFO runs empty. On the other hand, shorter timer period slows
down the computation due to more frequent interrupts of the CPU (interrupt overhead). To study
its effect, system performance is tested with different timer period. However, as Table 2 shows,
the influence of different timer period is minor, compared with that of cache configurations and
compiler optimizations. Decoding takes from 4.77 seconds with a 2.6 ms timer to 4.93 seconds
with a 1 ms timer. We attribute the relatively low overhead to the fact that our system does not
execute an RTOS and therefore avoids scheduling overhead.

Timer interrupt period Decoding time
2.6 ms 4.77 s
2.3 ms 4.79 s
2.0 ms 4.81 s
1.0 ms 4.93 s

Table 2: Decoding time with different timer period settings. Test with input of 128KB stereo MP3
data at 128 Kbps, i.e. 7.51 second of music in real-time, and with cache configuration of 8KB
I-cache, 32KB D-cache, 16B D-cache block size

7 Conclusion

In this paper, we have presented a case study of a manual implementation of areal-time MP3 de-
coder. Our manual exploration process has shown that memory configuration, cache configuration,
compiler optimization and interrupt overhead show significant influence to theperformance of our
software centric system. For a timing accurate model of a system, it is beneficial to include these
features in an abstract model. Particularly, the memory hierarchy and the compiler optimization are
of interest, since they had most performance impact.
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