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Abstract

System-level design methodology and supporting tools iheee developed to address the
complexity of embedded systems and to achieve shortetdimearket. Modeling a complex
system at higher level of abstraction has benefits of fagtsiga space exploration and enables
the path to automatic generation of low level models thaneatwith actual implementation.
One trade-off of system models is related to the amount dumgh implementation detail.
Abstracting more details results in faster simulationsjlevpreserving more details results in
more accurate estimation. This work presents a case studynadinual implementation of a
real-time MP3 decoder on FPGA, to identify system featuras dre important for modeling.
Our experimental results show that cache configuratiorermipt overhead and compiler op-
timization options significantly influence system perfaroga Therefore, it is advantageous to
include the timing effect of these features in a system model
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Abstract

System-level design methodology and supporting tools have beenpilétoaddress the com-
plexity of embedded systems and to achieve shorter time-to-marketliddogleomplex system at
higher level of abstraction has benefits of faster design space explotatic enables the path to
automatic generation of low level models that connect with actual implet@mt®ne trade-off of
system models is related to the amount of captured implementation detailaé&tlrgirmore details
results in faster simulations, while preserving more details results in morgraiecestimation. This
work presents a case study of a manual implementation of a real-time E&&ldr on FPGA, to
identify system features that are important for modeling. Our experimeggalts show that cache
configuration, interrupt overhead and compiler optimization options sicamfly influence system
performance. Therefore, it is advantageous to include the timing effdoeeé features in a system
model.

1 Introduction

Embedded systems are widely used today in various fields such as automabdgynmultimedia
applications and medical applications. As complexity of embedded systemasasrdraditional
manually implementation’s are no longer feasible. To cope with the problempsystel design
methodology and supporting tools are developed. Modeling systems withr ldgbkiaction level
enables fast design space exploration and hardware/software parjtion
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One essential aspect of system level design methodology is a sufficienifyrehensive model
to capture necessary characteristics of the system at a high abstraegébnTigning accuracy is
usually an important property we want to observe from these modelsudetianing accuracy is
important to guarantee close relation between model and implementation. Hplater estimated
timing requires more detailed models, which result in slower simulations. This gageribes a
case study of manually adapting an MP3 decoder reference soureéoc@kecution on an embed-
ded system while meeting real-time constraints. The goal of this work is to ideotifie important
model features that are necessary for expressive and accussmsimulations to accurately guide
design space exploration.

MP3 decoder is a representative industrial multimedia application. MP3 is @lgyogudio
compression scheme that can achieve 90% or more compression rate. stfd&8 is composed
of generally independent frames, each of which has its own headeaatid information. It is
computation consuming to decode MP3 stream during music play back. MB8idggoses real-
time requirements for timely decoding of MP3 frames. By implementing such a deocaghually
on FPGA, we are able to explore architectural and software alternativibe design. From the
experimental results, we identify desirable model features for moreaeamodeling at an abstract
level.

In following section, some work related with this study is introduced. Sectiowesa brief
description of MP3 decoder. Section 4 outlines the design platform usedltiera DE2 board.
Section 5 describes the main implementation work by adapting a decoder ktogl@sachines to
embedded system. Section 6 discusses the design space exploratiofionagebto find suitable
design choices. Finally, section 7 concludes this paper.

2 Related Work

Transaction-level modeling is emerging as a high-level modeling approatdatovith the rising
complexity of embedded systems. System-level design methodology hastbdieal £xtensively
via using the transaction level modeling language of SpecC or SystemC.

Chandraiah et al. [2] have used MP3 audio decoder as an examplevotishidenefits of
automated SoC design based on SpecC methodology. They first devalspedification model in
system-level design language of SpecC from source C code manuatiypéhnrmed automated
architecture and communication exploration with a supporting tool SoC Emagnnh(SCE) [3],
and finally the refined model can be synthesized into software binaryahata on an Instruction
Set Simulator (ISS). Their work, however, did not take caches intousxtco

Yu et al. [8] have developed a tool for automatic generation of TLM, uBiR3 decoder as an
example. With custom communication platforms and the decoder source codthgy@ave gen-
erated SystemC TLM, which is ready for simulation. Their TLM includes comnatioic models
of bus and bridge.

Papakonstantinou et al. [6] have implemented a floating-point MP3 deocadePGA. By im-
plementing floating point accelerators as custom instructions in Nios2 garcésey have achieved
real-time decoding of MP3 data. Their work focused on acceleratorrigsidnile our work focuses
on overall system performance.



3 Design Drive: MP3 Decoder

MPEG-1 Audio Layer 3 (MP3) is a very efficient audio compression swhdt can achieve more
than 90% compression while keeping high quality of sound. Due to this red408 format is
widely used in our daily life and a MP3 decoder can be a representativstital multimedia
application.

A MP3 decoder takes MP3 stream as input and generates PCM samplésias A MP3 stream
is composed of frames. Each frame contains 1152 encoded PCM samjfitameiconsists of four
main parts: header, side information, main data and ancillary data (Figuféh&)header begins
with 12-bit sync-word indicating the starting point of each frame, and it edstiains information
about the layer, bitrate, sampling frequency and stereo mode. Side infmmmoantains necessary
information to decode main data. Main data contains the coded scale faaldredtuffman coded
frequency lines. Ancillary data contains some user-defined data sicérdi$ying tag information.
In our study, a sampling rate of 48 KHz is used. Thus, in order to decadiregl-time, each frame
must be decoded in 24 ms (1152 samples per frame divided by 48 KHz).

‘ Header ‘ Side info Main data ’ Ancillary data ‘

Figure 1: MP3 frame format [5]

Figurel 2 shows the decoder data flow. The incoming data stream is readivadual frames
(indicated by sync-word) and the correctness of each frame is ctheokiter Huffman decod-
ing, requantization and reordering, the encoded audio samples aretfeddiereo decoder, which
supports both MS stereo and intensity stereo formats. The alias reductmntbém reduces the
unavoidable aliasing effects of the encoding polyphase filter bank. WexiMDCT block con-
verts the frequency domain samples to frequency subband samples. ,Rimalpolyphase filter
bank transforms samples from different frequency subbands into £8Mbles, which is ready to
be played back through an audio codec.

4 Design Environment

FPGAs are a very popular means for computing and prototyping. Theydergreat design flex-
ibility, fast turnaround time and simpler design flow. For these reasonshamse FPGA as our
design environment. Particularly, Altera DE2 board is used as our expdrpfaform. It hosts
Cyclone Il EP2C35 FPGA, SDRAM, SRAM, flash memory, SD memory cart 8-bit Audio
codec (WM8731), VGA codec, LEDs and other components. Cyclosallow-cost FPGA, which
has a capacity of 33,216 logical-elements and 105 M4K RAM blocks. The coemts we are us-
ing besides Cyclone Il are: SDRAM and SRAM for storing data and instms, audio codec for
converting PCM samples to analog signals, and the SD card socket for inpu

Nios Il EDS tool set is used for the implementation. A general Nios 1l systesigd flow starts
with defining and generating the system in SOPC Builder, where standedaidr®@ components
and a proper Nios Il core are configured. Then the whole system thesined using Quartus2,

3
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Figure 2: MP3 decoder block diagram [5]

which can produce two files. One is an SOPC system file (.ptf) which is ddgdalios2 IDE to
compile any software to target hardware system, and the other is a SRAMt Gl§e(.sof) which is
the compiled hardware description of the system and ready to be dowdltatiaget board. With
the generated system, we can develop our software application andhug/fole an ISS or directly
on board. Often we may find the generated system does not fulfill all thereenents, such as
memory capacity or execution speed. We can iteratively go back to modifgdoc@mponents in
SOPC builder and re-generate the hardware system.

It is not necessary to perform all the steps in our study. An existingrsystan DE2's demon-
stration package [1], including the SOPC system file and SRAM Object Filesseid as a starting
point.

4.1 System Architecture

Figure 3 presents the main components of the system. Nios2 processon Vfast’ working at 100
MHz is selected. It is tightly connected to an instruction cache and a date,dsath of which have
configurable sizes. Nios2 communicates with the memories, SD card andR&Gid-1FO via
Avalon bus interface. The main memory consists of 512KB SRAM and 8MBADRnput MP3
stream is read from SD card. The audAC_FIFO, an IP component, is an audio DAC controller
with 256x16 FIFO memory. The audio DAC controller provides clock generation anafldw
control for the audio codec via serial I12C bus interface. The audiecoeceives audio samples
from the FIFO and send them to its line out port to play the music.
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Figure 3: System Architecture

5 Reference Code Modifications For Embedded Constraints

Our implementation is based on Underbit MPEG audio decoder library [7¢ sbairce code is
an implementation based on the ISO/IEC standards. It only uses fixedegoongutation and has
an output of 16-bit stereo PCM. Since the reference source codesiskéog application, our main
work is to design input and output routines for FPGA, and optimize for menmmsage and execution
speed.

Size constrained input In the PC source code, an entire MP3 file is read into memory as input.
However, unlike on a PC, embedded systems usually have very limited memengfdite it is not
safe to read an MP3 file with unbounded size in this case.

This point is illustrated again in Figure 4. The PC application reads the entanstnto a
buffer. Later, it advances the frame pointer through the buffer whitedieg. Such large buffers
are not available in embedded systems. A software solution is to use a smalbirfifen which can
hold a few MP3 frames and read from SD card only on demand. Since thefA®ading the SD
card only supports block-by-block read (512 bytes per block), itigeasible to read the exact size
of each frame. Instead, we read several blocks at a time. Once a femdertis decoded, the size
of next frame is known. If the data left in the input buffer is less than tiqeired frame size, we
first move the not-yet-decoded data to the beginning of input bufferttaardread in new blocks
and place them right after the shifted old data. In this way, we maintain a smabwinf a few
frames and move it through large MP3 source stream.

Concurrent output: Inthe PC source code, the output of PCM samples is written to a file during
decoding. In our case, the audio FIFO is too small to hold an entire ded@ded. Therefore, we
need to introduce a circular software buffer between the decoder ermuthut FIFO. We use an
interrupt in order to fill the output FIFO in parallel to decoding the data. éi@s the output
FIFO implementation does not include an interrupt generation on an empty El&@y provides
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a pollable flag indicating full FIFO.

Our alternative is to use a periodic timer interrupt to decouple the routineetmding and that
for output. It is feasible, because the output rate of audio codec isacurad we can know when
the FIFO will be close to empty. In this way, we can have the concurrent mutgatin a periodical
interrupt service routine. However, the next issue is selecting a ptioper period in order to play
back music continuously. We can firstly find out how long in real-time the musipkss can be
hold in the FIFO. Knowing the FIFO has 16-bit data width, 256 in depth, chainels and uses a
sampling rate of 48 KHz, a calculation can be:

Length of music the FIFO can hold

= FIFO size / number of channels / sampling rate

=256/2/48000 =2.66 ms

The result suggests if we use a timer interrupt for continuously playing tmasic, the upper
bound of the timer interval is 2.66 ms. A smaller timer period is necessary to kesfptst margin
avoiding that the FIFO runs empty due to the interrupt latency. Choosingéfes/anargin has
an effect on system performance. With a too fast timer period the inteougohead will reduce
performance. On the other hand, a too long period - a too small safety maaginause an incorrect
output if the FIFO runs empty due to too long interrupt latency. In our dhseapplication runs
without an RTOS and avoids long critical sections that disable interruptharsdvould increase the
latency. We therefore can use a very small safety margin of only 0.06 m&xpariment on the
effect of different timer period to system performance is provided itiae6.

5.1 Software Execution

Figurel 5 presents the final software flow of the implementation. Programs stih initializing
timer interrupt, SD card and decoder datastructures. Decoding beginseaiting and decoding
the first MP3 frame header. It checks if the whole frame exists in the ingterbif not, read more
source data from SD card. Then each frame is decoded and the ofiRDMbdata is stored in an
output buffer. The output buffer is processed by the timer interrugine, which writes the PCM
samples to the audio FIFO and releases the buffer space. In paralleliF-tbddfwards the data to
audio codec which plays the music.



Initialize timer
interrupt. S0 card
and decoder

3
Main sk MP3 decoder

Decode frame | [nterrupt service
header ) routne
write PCM data
[roin output bulfer
to andio FIFCH
; YES
Read MP3 datn ‘\KETT_CTWW :[hzm.h\-art‘]
from S0 o input Y
buffer
Audio codec plays &}
JL imusic from FIFCH
Decode mext frame
unil synthesize PCM
data
Wnte PCM to
ouwiput bulfer

Decoding finish

Figure 5: Software Flow Chart

6 Design Space Exploration

In order to find suitable configurations for the system, design spaceratiplts are necessary to be
performed. The most important issue during the implementation is to achieviemneadlecoding.
We focus for our experiments on the single core architecture with one Mozegsor, an output
FIFO, and vary the memory configuration. A test based on the initial systefigaration shows
that it take 800% of real-time to decode a music sample (e.g. 8 sec decoding tihesdo of
music) with 4KB I-cache, 2KB D-cache, SDRAM as main memory and no comggdgmization.
To address this problem, we have used a faster memory, SRAM (which-ahipfland therefore
slower to access than on-chip instruction cache) to store program tex¢xatored the parameter
space of cache configurations, compiler optimizations and timer interruptiper

Cache configurations Nios2 has separated instruction and data cache. Both caches ate direc
mapped because of its efficiency on FPGA. The I-cache block size isy&2 Blote that the as-
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sociativity and I-cache block size are not configurable in the systendditi@n, since Cyclone I
is a relatively small FPGA with limited RAM blocks, the cache parameter spaceawsearch is
limited to a small scope.

Figure 6 shows the result of the cache parameter space exploratioremtoffdlfill real-time
requirements. We use a set of baseline parameters of 8KB I-cachB,D&lache and 16B D-cache
block size, and then change one parameter at a time with other parametgentém observe the
performance.

First we change the I-cache size. Figure 6(a) shows that decodifmpisrghan real-time at
4KB (129% means it takes 1.29 sec to decode 1 sec of music). It has sighifigorovement when
I-cache size reaches 8 KB, but stays at the same level at 16 KB. 3hi¢saggests 8KB is a proper
size for I-cache because it holds the first working set of instructidlext, we vary the D-cache
size. Figure 6(b) shows that the decoding time steadily decreases wbachB-size increases. It
suggests the working set of data is relatively large in our application, $d tten always benefit
from larger cache size. Finally, we vary D-cache block size. As wevkiarger block size will
introduce less compulsory misses but more conflict misses. Figure 6(@¥ ghat the negative
effect of larger block size is dominant in our case, and the performareter when smaller block
size is used with other parameters unchanged.

The best performance found is at the configuration of 8K I-cachi€,[32ache, 16B D-cache
block size, when decoding is done in 64% of real-time.

Compiler optimizations: Compiler optimizations have a great impact on software perfor-
mance. As shown in Table 1, the decoding time decreases more than 40%ihyg tam optimiza-
tions. In addition, among all optimize options, -Os (which includes all option®hand further
optimizes for size) provides the best performance, and -O3 (whichausese aggressive inlining
alias over -O2) provides slightly worse performance than -O2. The eafptan for the result is that,
the code size is having more impact on system than some other optimize optieas.aGelatively
small instruction cache of 8KB, -O3, compared with -O2, inlines all functiausch increases code
size and negatively impacts cache locality in our case and therefore sluwass performance. We
see an indication for this by enabliafinline-functionsover -O2, and decoding time will be slowed
down to 5101.26 ms. Overall, we see that the compiler optimization dramaticallynoéisystem



performance and therefore are important modeling aspect.

Optimize option Decoding time
no optimization (-O0) 115s
optimize (-O1) 59.2s

optimize more (-O2) 479s
optimize most (-O3) 50.9s
optimize size (-Os) 47.3s

Table 1: Decoding time with different compiler optimizations. Test with input & KB stereo
MP3 data at 128 Kbps, i.e. 7.51 second of music in real-time, and with cacfiguation of 8KB
I-cache, 32KB D-cache, 16B D-cache block size

Timer period: Previously, we have calculated an upper-bound for timer period inr aode
have concurrent output. Since there is latency between releasing the tiereupb and the actual
execution of the interrupt handler (i.e. interrupt latency), a shorter timgogis needed to include
a safety margin and avoid that the FIFO runs empty. On the other hanterstioer period slows
down the computation due to more frequent interrupts of the CPU (interugphead). To study
its effect, system performance is tested with different timer period. HawesgeTable 2 shows,
the influence of different timer period is minor, compared with that of cadmigurations and
compiler optimizations. Decoding takes from 4.77 seconds with a 2.6 ms timer to €c68ds
with a 1 ms timer. We attribute the relatively low overhead to the fact that ourmsystes not
execute an RTOS and therefore avoids scheduling overhead.

Timer interrupt period Decoding time

2.6 ms 4.77s
2.3 ms 4.79s
2.0 ms 4.81s
1.0 ms 4.93s

Table 2: Decoding time with different timer period settings. Test with input ofKB&tereo MP3
data at 128 Kbps, i.e. 7.51 second of music in real-time, and with cache waitfign of 8KB
I-cache, 32KB D-cache, 16B D-cache block size

7 Conclusion

In this paper, we have presented a case study of a manual implementatioeabitine MP3 de-

coder. Our manual exploration process has shown that memory catiogyrcache configuration,
compiler optimization and interrupt overhead show significant influence tpatHfermance of our
software centric system. For a timing accurate model of a system, it is beh&fioialude these

features in an abstract model. Particularly, the memory hierarchy andrigleooptimization are

of interest, since they had most performance impact.
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