//////////////////////////////////////////////////////// // UART RX and TX module // The UART settings are fixed // TX: 8-bit data, 2 stop, no-parity // RX: 8-bit data, 1 stop, no-parity (the receiver can accept more stop bits of course) //`define SIMULATION // in this mode, TX outputs one bit per clock cycle // and RX receives one bit per clock cycle (for fast simulations) //////////////////////////////////////////////////////// module async_transmitter( input clk, input TxD_start, input [7:0] TxD_data, output TxD, output TxD_busy ); // Assert TxD_start for (at least) one clock cycle to start transmission of TxD_data // TxD_data is latched so that it doesn't have to stay valid while it is being sent parameter ClkFrequency = 12000000; // 12MHz parameter Baud = 115200; generate if(ClkFrequency<Baud*8 && (ClkFrequency % Baud!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency incompatible with requested Baud rate"); endgenerate //////////////////////////////// `ifdef SIMULATION wire BitTick = 1'b1; // output one bit per clock cycle `else wire BitTick; BaudTickGen #(ClkFrequency, Baud) tickgen(.clk(clk), .enable(TxD_busy), .tick(BitTick)); `endif reg [3:0] TxD_state = 0; wire TxD_ready = (TxD_state==0); assign TxD_busy = ~TxD_ready; reg [7:0] TxD_shift = 0; always @(posedge clk) begin if(TxD_ready & TxD_start) TxD_shift <= TxD_data; else if(TxD_state[3] & BitTick) TxD_shift <= (TxD_shift >> 1); case(TxD_state) 4'b0000: if(TxD_start) TxD_state <= 4'b0100; 4'b0100: if(BitTick) TxD_state <= 4'b1000; // start bit 4'b1000: if(BitTick) TxD_state <= 4'b1001; // bit 0 4'b1001: if(BitTick) TxD_state <= 4'b1010; // bit 1 4'b1010: if(BitTick) TxD_state <= 4'b1011; // bit 2 4'b1011: if(BitTick) TxD_state <= 4'b1100; // bit 3 4'b1100: if(BitTick) TxD_state <= 4'b1101; // bit 4 4'b1101: if(BitTick) TxD_state <= 4'b1110; // bit 5 4'b1110: if(BitTick) TxD_state <= 4'b1111; // bit 6 4'b1111: if(BitTick) TxD_state <= 4'b0010; // bit 7 4'b0010: if(BitTick) TxD_state <= 4'b0011; // stop1 4'b0011: if(BitTick) TxD_state <= 4'b0000; // stop2 default: if(BitTick) TxD_state <= 4'b0000; endcase end assign TxD = (TxD_state<4) | (TxD_state[3] & TxD_shift[0]); // put together the start, data and stop bits endmodule //////////////////////////////////////////////////////// module async_receiver( input clk, input RxD, output reg RxD_data_ready = 0, output reg [7:0] RxD_data = 0, // data received, valid only (for one clock cycle) when RxD_data_ready is asserted // We also detect if a gap occurs in the received stream of characters // That can be useful if multiple characters are sent in burst // so that multiple characters can be treated as a "packet" output RxD_idle, // asserted when no data has been received for a while output reg RxD_endofpacket = 0 // asserted for one clock cycle when a packet has been detected (i.e. RxD_idle is going high) ); parameter ClkFrequency = 12000000; // 12MHz parameter Baud = 115200; parameter Oversampling = 8; // needs to be a power of 2 // we oversample the RxD line at a fixed rate to capture each RxD data bit at the "right" time // 8 times oversampling by default, use 16 for higher quality reception generate if(ClkFrequency<Baud*Oversampling) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency too low for current Baud rate and oversampling"); if(Oversampling<8 || ((Oversampling & (Oversampling-1))!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Invalid oversampling value"); endgenerate //////////////////////////////// reg [3:0] RxD_state = 0; `ifdef SIMULATION wire RxD_bit = RxD; wire sampleNow = 1'b1; // receive one bit per clock cycle `else wire OversamplingTick; BaudTickGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .enable(1'b1), .tick(OversamplingTick)); // synchronize RxD to our clk domain reg [1:0] RxD_sync = 2'b11; always @(posedge clk) if(OversamplingTick) RxD_sync <= {RxD_sync[0], RxD}; // and filter it reg [1:0] Filter_cnt = 2'b11; reg RxD_bit = 1'b1; always @(posedge clk) if(OversamplingTick) begin if(RxD_sync[1]==1'b1 && Filter_cnt!=2'b11) Filter_cnt <= Filter_cnt + 1'd1; else if(RxD_sync[1]==1'b0 && Filter_cnt!=2'b00) Filter_cnt <= Filter_cnt - 1'd1; if(Filter_cnt==2'b11) RxD_bit <= 1'b1; else if(Filter_cnt==2'b00) RxD_bit <= 1'b0; end // and decide when is the good time to sample the RxD line function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction localparam l2o = log2(Oversampling); reg [l2o-2:0] OversamplingCnt = 0; always @(posedge clk) if(OversamplingTick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1; wire sampleNow = OversamplingTick && (OversamplingCnt==Oversampling/2-1); `endif // now we can accumulate the RxD bits in a shift-register always @(posedge clk) case(RxD_state) 4'b0000: if(~RxD_bit) RxD_state <= `ifdef SIMULATION 4'b1000 `else 4'b0001 `endif; // start bit found? 4'b0001: if(sampleNow) RxD_state <= 4'b1000; // sync start bit to sampleNow 4'b1000: if(sampleNow) RxD_state <= 4'b1001; // bit 0 4'b1001: if(sampleNow) RxD_state <= 4'b1010; // bit 1 4'b1010: if(sampleNow) RxD_state <= 4'b1011; // bit 2 4'b1011: if(sampleNow) RxD_state <= 4'b1100; // bit 3 4'b1100: if(sampleNow) RxD_state <= 4'b1101; // bit 4 4'b1101: if(sampleNow) RxD_state <= 4'b1110; // bit 5 4'b1110: if(sampleNow) RxD_state <= 4'b1111; // bit 6 4'b1111: if(sampleNow) RxD_state <= 4'b0010; // bit 7 4'b0010: if(sampleNow) RxD_state <= 4'b0000; // stop bit default: RxD_state <= 4'b0000; endcase always @(posedge clk) if(sampleNow && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]}; //reg RxD_data_error = 0; always @(posedge clk) begin RxD_data_ready <= (sampleNow && RxD_state==4'b0010 && RxD_bit); // make sure a stop bit is received //RxD_data_error <= (sampleNow && RxD_state==4'b0010 && ~RxD_bit); // error if a stop bit is not received end `ifdef SIMULATION assign RxD_idle = 0; `else reg [l2o+1:0] GapCnt = 0; always @(posedge clk) if (RxD_state!=0) GapCnt<=0; else if(OversamplingTick & ~GapCnt[log2(Oversampling)+1]) GapCnt <= GapCnt + 1'h1; assign RxD_idle = GapCnt[l2o+1]; always @(posedge clk) RxD_endofpacket <= OversamplingTick & ~GapCnt[l2o+1] & &GapCnt[l2o:0]; `endif endmodule //////////////////////////////////////////////////////// // dummy module used to be able to raise an assertion in Verilog module ASSERTION_ERROR(); endmodule //////////////////////////////////////////////////////// module BaudTickGen( input clk, enable, output tick // generate a tick at the specified baud rate * oversampling ); parameter ClkFrequency = 12000000; parameter Baud = 115200; parameter Oversampling = 1; function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction localparam AccWidth = log2(ClkFrequency/Baud)+8; // +/- 2% max timing error over a byte reg [AccWidth:0] Acc = 0; localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth)); // this makes sure Inc calculation doesn't overflow localparam Inc = ((Baud*Oversampling << (AccWidth-ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter); always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc <= Inc[AccWidth:0]; assign tick = Acc[AccWidth]; endmodule ////////////////////////////////////////////////////////