目录

什么叫A/D转换器?

https://www.rohm.com.cn/electronics-basics/ad-converters

A/D转换器

A/D转换器是从自然界的现象(各种各样的应用)产生的模拟信号变换为数字信号(A/D变换)的东西。这个工作是指由模拟信号经过采样→量化→编码变换为数字信号的一系列步骤。

基本操作

A/D转换器的基本操作请参见下方A/D转换器实例。

A/D转换器在离散周期内切出模拟信号的幅度,变换为用符号表示的数字信号。A/D转换了的数字信号位数叫做分辨率(这个情况下是3bit),最高位叫做MSB(Most Significant Bit),最低位叫做LSB(Least Significant Bit)。

下方的图片展示了模拟信号(输入)和数字信号(输出)的关系。作为数字信号差,可识别的模拟信号最小振幅是最小分辨率(=1LSB),在模拟信号和数字信号之间产生的误差叫做量化误差。

另外,第一个数字信号变化点(000→001)的0.5LSB下叫做零刻度,最后一个数字信号变化点(110→111)的0.5LSB上叫做满量程,从零刻度到满量程的这个区间叫满量程范围。

以下是模拟信号通过“采样→量化→编码”变换为数字信号的一系列步骤。

采样(Sampling)

在离散周期(采样周期:TS)内切出连续的模拟信号振幅值

<采样周期:Ts=1/(采样频率:Fs)>

进行采样的电路叫做采样和保持电路(简称S&H电路)

量化(Quantization)

在离散周期内切出的振幅值近似于离散振幅值。 <量化误差:(采样值)-(量化值)>

编码(Coding)

离散振幅用“0”和“1”这两个值来表示转换的代码。 转换了代码的电路叫做编码器(Encoder)。

基本形式1(闪存)

工作

预先用比较器同时比较分压成2N-1个的参考电压和模拟信号,比较结果用编码器转换成数字信号。

特点

为了把模拟信号一次转为数字信号,模拟信号不需要采样电路(S&H回路)。 在A/D转换器的基本形式中可最高速度转换。(采样频率甚至可超过1GHz。) N位分辨率需要2N-1个比较器,由于电路规模和功耗增加,分辨率最高为8位左右。

基本形式2(流水线)

工作

在一般1.5bit/级结构的情况下,从决定了MSB的第1级开始依次流水线操作,从而反复进行以下的处理。(VREF:参考电压)

模拟输入≦-VREF/4→ D=“00”

-VREF/4<模拟输入≦+VREF/4→ D=“01”

D=“00” → DAC输出:-VREF/2

D=“01” → DAC输出:0

D=“10” → DAC输出:+VREF/2

特点

A/D转换器的基本形式3(逐次比较<SAR>型)

工作

为了使采样的模拟信号和D/A转换器(DAC)的输出一致,从MSB开始逐次比较(Successive Approximation)。

   确定采样电压>DAC输出电压 → MSB="1"
   确定采样电压<DAC输出电压 → MSB="0"

下方是通过到LSB为止重复相同的逐次逼近来完成数字信号的转换。

特点

基本形式4(ΔΣ型)

工作

对模拟信号进行过采样,并使用ΔΣ调制将其转换为与模拟信号的幅度相对应的低位数据(比如1位),然后使用数字滤波器去除带外噪声并进行数据抽取处理,从而完成在原始采样频率下向数字信号的转换。

过采样

通过用比原始采样频率更高的频率来采样,来减少量化误差。

ΔΣ调制

通过过采样,积分器对采样电压和D/A转换器(DAC)输出电压之间的差(Δ)进行积分(Σ)。用比较器来比较积分值和参考电压的大小,并将积分值转换为低位数据。 通过将输出数据延迟1个采样周期并反馈至输入进行调制,使比较器产生的量化误差在低频区域较小,在高频区域较大。

从ΔΣ调制器输出的低位数据,除了原始信号分量外,在高频区域还有较大的量化误差分量。然而,由于这些分量在频率上是分开的,并且只能用数字滤波器去除量化误差分量,因此可以实现其他方式无法实现的高分辨率。

特点