## 驱动SSD1306显示屏
### 1. I2C屏幕
# Raspberry Pi Pico OLED Display Test
# Uses ssd1306 module
# display-ssd1306-test.py
# EETree Sci & Tech 2021
# https://www.eetree.cn
import machine
import utime
sda=machine.Pin(11)
scl=machine.Pin(10)
i2c=machine.I2C(0, sda=sda, scl=scl, freq=400000)
from ssd1306 import SSD1306_I2C
oled = SSD1306_I2C(128, 32, i2c)
print(i2c.scan())
oled.text('Welcome to the', 0, 0)
oled.text('Pi Pico', 0, 10)
oled.text('Display Demo', 0, 20)
oled.show()
utime.sleep(4)
oled.fill(1)
oled.show()
utime.sleep(2)
oled.fill(0)
oled.show()
while True:
oled.text("Hello World",0,0)
for i in range (0, 164):
oled.scroll(1,0)
oled.show()
utime.sleep(0.01)
这段代码是基于I2C接口协议的,将两个GPIO引脚定义为SDA(GPIO20)和SCL(GPIO21)。
Pico有两组I2C总线,你可以使用几种不同的GPIO引脚来连接它们。但它们并不是随便的引脚,例如某些引脚被指定为总线0的SDA,只有它们才能用于SDA总线0。
然后我们使用机器库的I2C函数定义一个I2C连接。我们需要给它提供以下参数。
I2C总线号,在我们的例子中是0。
SDA引脚
SCL引脚
I2C总线频率--在我们的例子中是400KHz。
然后我们添加OLED库,并创建一个I2C OLED对象。我们将大小参数和I2C连接信息传递给它。
注意,我们没有传递I2C地址。SD1306 OLED显示器有一个固定的I2C地址,所以我们不需要指定它。
不过,我在这里添加了一行与显示器无关的内容,但可以让你扫描I2C总线,并打印出它发现占用的地址。请注意,在Shell中打印出来的是十进制,而不是你更可能习惯看到的十六进制。
回到OLED脚本!
我们开始在显示屏上打印,几行文字。注意我们如何指定每行开始的像素位置。
实际上,我们并没有直接打印到显示屏上,而是将数据发送到一个缓冲区。oled.show()这一行将把该缓冲区的数据传输到显示器上。
在打印完欢迎信息并按住它四秒钟后,我们再执行oled.fill(1)。这将打开显示器中的每一个像素,或者更准确地说,是缓冲区中的每一个像素。然后我们做一个oled.show()来显示填充。
我们将填充物保持在显示屏上两秒钟,然后执行oled.fill(0),当我们显示它时,它将关闭显示屏中的每个像素。
现在进入True循环。
我们再次输入一些文本,经典的 "Hello World"。但我们没有进行 "显示 "来显示它,而是开始一个for-loop。在这个循环中,我们使用led.scroll(1,0)将显示水平移动1像素(垂直移动0像素,这就是另一个参数)。
然后我们在屏幕上显示,然后休眠一段很短的时间。然后我们再做一次。
结果将是显示屏在屏幕上滚动。你可以在for-loop中使用参数来改变它。
将脚本加载到你的Pico上,然后观看显示。你应该看到欢迎文字,然后是显示填充,然后是空。之后,只要你让实验运行,滚动的 "Hello World "就会继续。
### 2. SPI屏幕
from machine import Pin, SPI
from ssd1306 import SSD1306_SPI
import framebuf
from time import sleep
from utime import sleep_ms
spi = SPI(1, 100000, mosi=Pin(11), sck=Pin(10))
oled = SSD1306_SPI(128, 32, spi, Pin(9),Pin(8), Pin(0))
#oled = SSD1306_SPI(WIDTH, HEIGHT, spi, dc,rst, cs) use GPIO PIN NUMBERS
while True:
try:
for i in range(40):
for j in range(56):
oled.fill(0)
oled.show()
#sleep(1)
oled.text("HELLO www.eetree.cn",i,j)
oled.show()
sleep_ms(50)
except KeyboardInterrupt:
break
### 3. Adafruit关于SSD1306的使用介绍
#### I2C初始化
import machine
import ssd1306
i2c = machine.I2C(-1, machine.Pin(5), machine.Pin(4))
oled = ssd1306.SSD1306_I2C(128, 32, i2c)
#### SPI初始化
import machine
import ssd1306
spi = machine.SPI(1, baudrate=8000000, polarity=0, phase=0)
oled = ssd1306.SSD1306_SPI(128, 32, spi, machine.Pin(15), machine.Pin(0), machine.Pin(16)
### 4. SSD1306库的调用
[[https://docs.micropython.org/en/latest/esp8266/tutorial/ssd1306.html|Using a SSD1306 OLED display]]
SSD1306 OLED显示可以使用SPI或I2C接口,支持不同分辨率(128x64, 128x32, 72x40, 64x48)和颜色(白色, 黄色, 蓝色, 黄色 + 蓝色).
硬件SPI接口:
from machine import Pin, SPI
import ssd1306
hspi = SPI(1) # sck=14 (scl), mosi=13 (sda), miso=12 (unused)
dc = Pin(4) # data/command
rst = Pin(5) # reset
cs = Pin(15) # chip select, some modules do not have a pin for this
display = ssd1306.SSD1306_SPI(128, 64, hspi, dc, rst, cs)
用软件通过GPIO来模拟产生SPI接口:
from machine import Pin, SoftSPI
import ssd1306
spi = SoftSPI(baudrate=500000, polarity=1, phase=0, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
dc = Pin(4) # data/command
rst = Pin(5) # reset
cs = Pin(15) # chip select, some modules do not have a pin for this
display = ssd1306.SSD1306_SPI(128, 64, spi, dc, rst, cs)
I2C接口:
from machine import Pin, I2C
import ssd1306
# using default address 0x3C
i2c = I2C(sda=Pin(4), scl=Pin(5))
display = ssd1306.SSD1306_I2C(128, 64, i2c)
在第一行打印Hello World:
display.text('Hello, World!', 0, 0, 1)
display.show()
基本功能:
display.poweroff() # power off the display, pixels persist in memory
display.poweron() # power on the display, pixels redrawn
display.contrast(0) # dim
display.contrast(255) # bright
display.invert(1) # display inverted
display.invert(0) # display normal
display.rotate(True) # rotate 180 degrees
display.rotate(False) # rotate 0 degrees
display.show() # write the contents of the FrameBuffer to display memory
对FrameBuffer进行子类化提供了对图形原语的支持
display.fill(0) # fill entire screen with colour=0
display.pixel(0, 10) # get pixel at x=0, y=10
display.pixel(0, 10, 1) # set pixel at x=0, y=10 to colour=1
display.hline(0, 8, 4, 1) # draw horizontal line x=0, y=8, width=4, colour=1
display.vline(0, 8, 4, 1) # draw vertical line x=0, y=8, height=4, colour=1
display.line(0, 0, 127, 63, 1) # draw a line from 0,0 to 127,63
display.rect(10, 10, 107, 43, 1) # draw a rectangle outline 10,10 to 107,43, colour=1
display.fill_rect(10, 10, 107, 43, 1) # draw a solid rectangle 10,10 to 107,43, colour=1
display.text('Hello World', 0, 0, 1) # draw some text at x=0, y=0, colour=1
display.scroll(20, 0) # scroll 20 pixels to the right
# draw another FrameBuffer on top of the current one at the given coordinates
import framebuf
fbuf = framebuf.FrameBuffer(bytearray(8 * 8 * 1), 8, 8, framebuf.MONO_VLSB)
fbuf.line(0, 0, 7, 7, 1)
display.blit(fbuf, 10, 10, 0) # draw on top at x=10, y=10, key=0
display.show()
显示MicroPython的Logo并打印一些字符:
display.fill(0)
display.fill_rect(0, 0, 32, 32, 1)
display.fill_rect(2, 2, 28, 28, 0)
display.vline(9, 8, 22, 1)
display.vline(16, 2, 22, 1)
display.vline(23, 8, 22, 1)
display.fill_rect(26, 24, 2, 4, 1)
display.text('MicroPython', 40, 0, 1)
display.text('SSD1306', 40, 12, 1)
display.text('OLED 128x64', 40, 24, 1)
display.show()
### 5. MicroPython官方的驱动
[[https://github.com/micropython/micropython/blob/master/drivers/display/ssd1306.py|MicroPython SSD1306 OLED driver, I2C and SPI interfaces]]
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
from micropython import const
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_IREF_SELECT = const(0xAD)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)
# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
self.init_display()
def init_display(self):
for cmd in (
SET_DISP, # display off
# address setting
SET_MEM_ADDR,
0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE, # start at line 0
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO,
self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET,
0x00,
SET_COM_PIN_CFG,
0x02 if self.width > 2 * self.height else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV,
0x80,
SET_PRECHARGE,
0x22 if self.external_vcc else 0xF1,
SET_VCOM_DESEL,
0x30, # 0.83*Vcc
# display
SET_CONTRAST,
0xFF, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
SET_IREF_SELECT,
0x30, # enable internal IREF during display on
# charge pump
SET_CHARGE_PUMP,
0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01, # display on
): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP)
def poweron(self):
self.write_cmd(SET_DISP | 0x01)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def rotate(self, rotate):
self.write_cmd(SET_COM_OUT_DIR | ((rotate & 1) << 3))
self.write_cmd(SET_SEG_REMAP | (rotate & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width != 128:
# narrow displays use centred columns
col_offset = (128 - self.width) // 2
x0 += col_offset
x1 += col_offset
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
self.write_list = [b"\x40", None] # Co=0, D/C#=1
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.write_list[1] = buf
self.i2c.writevto(self.addr, self.write_list)
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
import time
self.res(1)
time.sleep_ms(1)
self.res(0)
time.sleep_ms(10)
self.res(1)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(buf)
self.cs(1)
### 6. 汉字的显示
* 支持英文字号8x8,16x16,24x24,32x32
* 支持中文字号16x16,24x24,32x32
* 封装lcd操作常用接口
#### API
def init_i2c(scl, sda, width, height):
"""
初始化i2c接口
:param scl: i2c的时钟脚
:param sda: i2c的数据脚
:param width: oled屏幕的宽度像素
:param height: oled屏幕的高度像素
"""
def clear():
"""清除屏幕"""
def show():
"""屏幕刷新显示"""
def pixel(x, y):
"""画点"""
def text(string, x_axis, y_axis, font_size):
"""显示字符串.注意字符串必须是英文或者数字"""
def set_font(font, font_size):
"""
设置中文字库.允许设置多个不同大小的字库
字库必须是字典,格式示例:
font = {
0xe4bda0:
[0x08, 0x08, 0x08, 0x11, 0x11, 0x32, 0x34, 0x50, 0x91, 0x11, 0x12, 0x12, 0x14, 0x10, 0x10, 0x10, 0x80, 0x80,
0x80, 0xFE, 0x02, 0x04, 0x20, 0x20, 0x28, 0x24, 0x24, 0x22, 0x22, 0x20, 0xA0, 0x40], # 你
0xe5a5bd:
[0x10, 0x10, 0x10, 0x10, 0xFC, 0x24, 0x24, 0x25, 0x24, 0x48, 0x28, 0x10, 0x28, 0x44, 0x84, 0x00, 0x00, 0xFC,
0x04, 0x08, 0x10, 0x20, 0x20, 0xFE, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xA0, 0x40] # 好
}
"""
def text_cn(string, x_axis, y_axis, font_size):
"""显示中文字符.注意字符必须是utf-8编码"""
#### 显示英文字符
import ssd1306py as lcd
lcd.init_i2c(22, 21, 128, 64)
lcd.text('font8x8', 0, 0, 8)
lcd.text('font16x16', 0, 20, 16)
lcd.show()
import ssd1306py as lcd
lcd.init_i2c(22, 21, 128, 64)
lcd.text('font32x32', 0, 0, 32)
lcd.show()
#### 显示汉字
可以使用在线转换工具查询:[[http://www.mytju.com/classcode/tools/encode_utf8.asp|在线转换工具]]
比如以下示例,显示汉字“你好”。
import ssd1306py as lcd
lcd.init_i2c(22, 21, 128, 64)
font16 = {
0xe4bda0:
[0x08, 0x08, 0x08, 0x11, 0x11, 0x32, 0x34, 0x50, 0x91, 0x11, 0x12, 0x12, 0x14, 0x10, 0x10, 0x10, 0x80, 0x80,
0x80, 0xFE, 0x02, 0x04, 0x20, 0x20, 0x28, 0x24, 0x24, 0x22, 0x22, 0x20, 0xA0, 0x40], # 你
0xe5a5bd:
[0x10, 0x10, 0x10, 0x10, 0xFC, 0x24, 0x24, 0x25, 0x24, 0x48, 0x28, 0x10, 0x28, 0x44, 0x84, 0x00, 0x00, 0xFC,
0x04, 0x08, 0x10, 0x20, 0x20, 0xFE, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xA0, 0x40] # 好
}
font24 = {
0xe4bda0:
[0x00, 0x01, 0x01, 0x03, 0x03, 0x02, 0x04, 0x04, 0x0E, 0x1C, 0x14, 0x24, 0x44, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x05, 0x04, 0x06, 0x04, 0x00,
0x00, 0x00, 0x8C, 0x0C, 0x08, 0x18, 0x1F, 0x30, 0x21, 0x41, 0x41, 0x91, 0x19, 0x11, 0x31, 0x21, 0x41, 0x41,
0x81, 0x01, 0x11, 0x0F, 0x02, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFC, 0x0C, 0x10, 0x00, 0x00, 0x00, 0x20, 0x10, 0x18, 0x0C, 0x0C, 0x06,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00], # 你
0xe5a5bd:
[0x00, 0x00, 0x06, 0x06, 0x06, 0x04, 0x04, 0x7F, 0x0C, 0x0C, 0x08, 0x08, 0x08, 0x18, 0x10, 0x11, 0x0D, 0x03,
0x02, 0x04, 0x18, 0x20, 0x40, 0x00,
0x00, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0xC0, 0x40, 0x40, 0xC0, 0x80, 0xBF, 0x80, 0x80, 0x00, 0x00, 0x80,
0xC0, 0x60, 0x00, 0x07, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0xF8, 0x18, 0x20, 0x40, 0x80, 0x80, 0x80, 0x84, 0xFE, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x00, 0x00] # 好
}
font32 = {
0xe4bda0:
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x07, 0x0D, 0x09, 0x11, 0x11, 0x21,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x40, 0x70, 0x60, 0xE0, 0xC0, 0xC1, 0x81, 0x03,
0x03, 0x86, 0x84, 0x8C, 0x88, 0x90,
0x81, 0x83, 0x83, 0x83, 0x86, 0x86, 0x8C, 0x88, 0x90, 0x90, 0xA0, 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x60, 0xE0, 0xC0, 0xC0, 0x80,
0x80, 0xFF, 0x00, 0x10, 0x0C, 0x08, 0x08, 0x08, 0x88, 0x88, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0xF8, 0x38, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0xFC, 0x18, 0x30, 0x20, 0x40, 0x00, 0x00, 0x00, 0x80,
0x40, 0x20, 0x30, 0x18, 0x1C, 0x0C,
0x0C, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], # 你
0xe5a5bd:
[0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x03, 0x3F, 0x03, 0x03, 0x02, 0x06, 0x06, 0x04, 0x04, 0x0C,
0x0C, 0x08, 0x08, 0x0E, 0x01, 0x00,
0x00, 0x01, 0x03, 0x04, 0x08, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x80, 0x81, 0x80, 0x00, 0x08, 0xFC,
0x08, 0x08, 0x18, 0x18, 0x18, 0x18,
0x17, 0x30, 0x30, 0x30, 0x60, 0x60, 0xC0, 0xF0, 0xBC, 0x8C, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xFF, 0x00, 0x00,
0x00, 0x01, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0xFF, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0xFC, 0x1C, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x20, 0xF0, 0x70, 0xC0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0xFC, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] # 好
}
lcd.init_i2c(22, 21, 128, 64)
lcd.set_font(font16, 16)
lcd.set_font(font24, 24)
lcd.set_font(font32, 32)
lcd.text_cn('你好', 0, 0, 16)
lcd.text_cn('你好', 40, 00, 24)
lcd.text_cn('你好', 0, 30, 32)
lcd.show()
### 7. 滚动屏幕的程序
[[https://randomnerdtutorials.com/micropython-ssd1306-oled-scroll-shapes-esp32-esp8266/|滚动屏幕]]
oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)
screen1_row1 = "Screen 1, row 1"
screen1_row2 = "Screen 1, row 2"
screen1_row3 = "Screen 1, row 3"
screen2_row1 = "Screen 2, row 1"
screen2_row2 = "Screen 2, row 2"
screen3_row1 = "Screen 3, row 1"
screen1 = [[0, 0 , screen1_row1], [0, 16, screen1_row2], [0, 32, screen1_row3]]
screen2 = [[0, 0 , screen2_row1], [0, 16, screen2_row2]]
screen3 = [[0, 40 , screen3_row1]]
# Scroll in screen horizontally from left to right
def scroll_in_screen(screen):
for i in range (0, oled_width+1, 4):
for line in screen:
oled.text(line[2], -oled_width+i, line[1])
oled.show()
if i!= oled_width:
oled.fill(0)
# Scroll out screen horizontally from left to right
def scroll_out_screen(speed):
for i in range ((oled_width+1)/speed):
for j in range (oled_height):
oled.pixel(i, j, 0)
oled.scroll(speed,0)
oled.show()
# Continuous horizontal scroll
def scroll_screen_in_out(screen):
for i in range (0, (oled_width+1)*2, 1):
for line in screen:
oled.text(line[2], -oled_width+i, line[1])
oled.show()
if i!= oled_width:
oled.fill(0)
# Scroll in screen vertically
def scroll_in_screen_v(screen):
for i in range (0, (oled_height+1), 1):
for line in screen:
oled.text(line[2], line[0], -oled_height+i+line[1])
oled.show()
if i!= oled_height:
oled.fill(0)
# Scroll out screen vertically
def scroll_out_screen_v(speed):
for i in range ((oled_height+1)/speed):
for j in range (oled_width):
oled.pixel(j, i, 0)
oled.scroll(0,speed)
oled.show()
# Continous vertical scroll
def scroll_screen_in_out_v(screen):
for i in range (0, (oled_height*2+1), 1):
for line in screen:
oled.text(line[2], line[0], -oled_height+i+line[1])
oled.show()
if i!= oled_height:
oled.fill(0)
while True:
# Scroll in, stop, scroll out (horizontal)
scroll_in_screen(screen1)
sleep(2)
scroll_out_screen(4)
scroll_in_screen(screen2)
sleep(2)
scroll_out_screen(4)
scroll_in_screen(screen3)
sleep(2)
scroll_out_screen(4)
# Continuous horizontal scroll
scroll_screen_in_out(screen1)
scroll_screen_in_out(screen2)
scroll_screen_in_out(screen3)
# Scroll in, stop, scroll out (vertical)
scroll_in_screen_v(screen1)
sleep(2)
scroll_out_screen_v(4)
scroll_in_screen_v(screen2)
sleep(2)
scroll_out_screen_v(4)
scroll_in_screen_v(screen3)
sleep(2)
scroll_out_screen_v(4)
# Continuous verticall scroll
scroll_screen_in_out_v(screen1)
scroll_screen_in_out_v(screen2)
scroll_screen_in_out_v(screen3)
### 8. 绘图
使用[[https://github.com/adafruit/micropython-adafruit-gfx/blob/master/gfx.py|Adafruit GFX Arduino library to MicroPython]]
# Port of Adafruit GFX Arduino library to MicroPython.
# Based on: https://github.com/adafruit/Adafruit-GFX-Library
# Author: Tony DiCola (original GFX author Phil Burgess)
# License: MIT License (https://opensource.org/licenses/MIT)
class GFX:
def __init__(self, width, height, pixel, hline=None, vline=None):
# Create an instance of the GFX drawing class. You must pass in the
# following parameters:
# - width = The width of the drawing area in pixels.
# - height = The height of the drawing area in pixels.
# - pixel = A function to call when a pixel is drawn on the display.
# This function should take at least an x and y position
# and then any number of optional color or other parameters.
# You can also provide the following optional keyword argument to
# improve the performance of drawing:
# - hline = A function to quickly draw a horizontal line on the display.
# This should take at least an x, y, and width parameter and
# any number of optional color or other parameters.
# - vline = A function to quickly draw a vertical line on the display.
# This should take at least an x, y, and height paraemter and
# any number of optional color or other parameters.
self.width = width
self.height = height
self._pixel = pixel
# Default to slow horizontal & vertical line implementations if no
# faster versions are provided.
if hline is None:
self.hline = self._slow_hline
else:
self.hline = hline
if vline is None:
self.vline = self._slow_vline
else:
self.vline = vline
def _slow_hline(self, x0, y0, width, *args, **kwargs):
# Slow implementation of a horizontal line using pixel drawing.
# This is used as the default horizontal line if no faster override
# is provided.
if y0 < 0 or y0 > self.height or x0 < -width or x0 > self.width:
return
for i in range(width):
self._pixel(x0+i, y0, *args, **kwargs)
def _slow_vline(self, x0, y0, height, *args, **kwargs):
# Slow implementation of a vertical line using pixel drawing.
# This is used as the default vertical line if no faster override
# is provided.
if y0 < -height or y0 > self.height or x0 < 0 or x0 > self.width:
return
for i in range(height):
self._pixel(x0, y0+i, *args, **kwargs)
def rect(self, x0, y0, width, height, *args, **kwargs):
# Rectangle drawing function. Will draw a single pixel wide rectangle
# starting in the upper left x0, y0 position and width, height pixels in
# size.
if y0 < -height or y0 > self.height or x0 < -width or x0 > self.width:
return
self.hline(x0, y0, width, *args, **kwargs)
self.hline(x0, y0+height-1, width, *args, **kwargs)
self.vline(x0, y0, height, *args, **kwargs)
self.vline(x0+width-1, y0, height, *args, **kwargs)
def fill_rect(self, x0, y0, width, height, *args, **kwargs):
# Filled rectangle drawing function. Will draw a single pixel wide
# rectangle starting in the upper left x0, y0 position and width, height
# pixels in size.
if y0 < -height or y0 > self.height or x0 < -width or x0 > self.width:
return
for i in range(x0, x0+width):
self.vline(i, y0, height, *args, **kwargs)
def line(self, x0, y0, x1, y1, *args, **kwargs):
# Line drawing function. Will draw a single pixel wide line starting at
# x0, y0 and ending at x1, y1.
steep = abs(y1 - y0) > abs(x1 - x0)
if steep:
x0, y0 = y0, x0
x1, y1 = y1, x1
if x0 > x1:
x0, x1 = x1, x0
y0, y1 = y1, y0
dx = x1 - x0
dy = abs(y1 - y0)
err = dx // 2
ystep = 0
if y0 < y1:
ystep = 1
else:
ystep = -1
while x0 <= x1:
if steep:
self._pixel(y0, x0, *args, **kwargs)
else:
self._pixel(x0, y0, *args, **kwargs)
err -= dy
if err < 0:
y0 += ystep
err += dx
x0 += 1
def circle(self, x0, y0, radius, *args, **kwargs):
# Circle drawing function. Will draw a single pixel wide circle with
# center at x0, y0 and the specified radius.
f = 1 - radius
ddF_x = 1
ddF_y = -2 * radius
x = 0
y = radius
self._pixel(x0, y0 + radius, *args, **kwargs)
self._pixel(x0, y0 - radius, *args, **kwargs)
self._pixel(x0 + radius, y0, *args, **kwargs)
self._pixel(x0 - radius, y0, *args, **kwargs)
while x < y:
if f >= 0:
y -= 1
ddF_y += 2
f += ddF_y
x += 1
ddF_x += 2
f += ddF_x
self._pixel(x0 + x, y0 + y, *args, **kwargs)
self._pixel(x0 - x, y0 + y, *args, **kwargs)
self._pixel(x0 + x, y0 - y, *args, **kwargs)
self._pixel(x0 - x, y0 - y, *args, **kwargs)
self._pixel(x0 + y, y0 + x, *args, **kwargs)
self._pixel(x0 - y, y0 + x, *args, **kwargs)
self._pixel(x0 + y, y0 - x, *args, **kwargs)
self._pixel(x0 - y, y0 - x, *args, **kwargs)
def fill_circle(self, x0, y0, radius, *args, **kwargs):
# Filled circle drawing function. Will draw a filled circule with
# center at x0, y0 and the specified radius.
self.vline(x0, y0 - radius, 2*radius + 1, *args, **kwargs)
f = 1 - radius
ddF_x = 1
ddF_y = -2 * radius
x = 0
y = radius
while x < y:
if f >= 0:
y -= 1
ddF_y += 2
f += ddF_y
x += 1
ddF_x += 2
f += ddF_x
self.vline(x0 + x, y0 - y, 2*y + 1, *args, **kwargs)
self.vline(x0 + y, y0 - x, 2*x + 1, *args, **kwargs)
self.vline(x0 - x, y0 - y, 2*y + 1, *args, **kwargs)
self.vline(x0 - y, y0 - x, 2*x + 1, *args, **kwargs)
def triangle(self, x0, y0, x1, y1, x2, y2, *args, **kwargs):
# Triangle drawing function. Will draw a single pixel wide triangle
# around the points (x0, y0), (x1, y1), and (x2, y2).
self.line(x0, y0, x1, y1, *args, **kwargs)
self.line(x1, y1, x2, y2, *args, **kwargs)
self.line(x2, y2, x0, y0, *args, **kwargs)
def fill_triangle(self, x0, y0, x1, y1, x2, y2, *args, **kwargs):
# Filled triangle drawing function. Will draw a filled triangle around
# the points (x0, y0), (x1, y1), and (x2, y2).
if y0 > y1:
y0, y1 = y1, y0
x0, x1 = x1, x0
if y1 > y2:
y2, y1 = y1, y2
x2, x1 = x1, x2
if y0 > y1:
y0, y1 = y1, y0
x0, x1 = x1, x0
a = 0
b = 0
y = 0
last = 0
if y0 == y2:
a = x0
b = x0
if x1 < a:
a = x1
elif x1 > b:
b = x1
if x2 < a:
a = x2
elif x2 > b:
b = x2
self.hline(a, y0, b-a+1, *args, **kwargs)
return
dx01 = x1 - x0
dy01 = y1 - y0
dx02 = x2 - x0
dy02 = y2 - y0
dx12 = x2 - x1
dy12 = y2 - y1
if dy01 == 0:
dy01 = 1
if dy02 == 0:
dy02 = 1
if dy12 == 0:
dy12 = 1
sa = 0
sb = 0
if y1 == y2:
last = y1
else:
last = y1-1
for y in range(y0, last+1):
a = x0 + sa // dy01
b = x0 + sb // dy02
sa += dx01
sb += dx02
if a > b:
a, b = b, a
self.hline(a, y, b-a+1, *args, **kwargs)
sa = dx12 * (y - y1)
sb = dx02 * (y - y0)
while y <= y2:
a = x1 + sa // dy12
b = x0 + sb // dy02
sa += dx12
sb += dx02
if a > b:
a, b = b, a
self.hline(a, y, b-a+1, *args, **kwargs)
y += 1
绘图示例:
oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)
graphics = gfx.GFX(oled_width, oled_height, oled.pixel)
while True:
graphics.line(0, 0, 127, 20, 1)
oled.show()
sleep(1)
oled.fill(0)
graphics.rect(10, 10, 50, 30, 1)
oled.show()
sleep(1)
oled.fill(0)
graphics.fill_rect(10, 10, 50, 30, 1)
oled.show()
sleep(1)
oled.fill(0)
graphics.circle(64, 32, 10, 1)
oled.show()
sleep(1)
oled.fill(0)
graphics.fill_circle(64, 32, 10, 1)
oled.show()
sleep(1)
oled.fill(0)
graphics.triangle(10,10,55,20,5,40,1)
oled.show()
sleep(1)
oled.fill(0)
graphics.fill_triangle(10,10,55,20,5,40,1)
oled.show()
sleep(1)
oled.fill(0)