### JTAG的工作原理及相关的代码
#### 什么是JTAG
#### JTAG是如何工作的?
##### 通过你的PC控制JTAG
并口
#define lpt_addr 0x378
#define TCK 0x01
void toggle_TCK()
{
outport(lpt_addr, 0);
outport(lpt_addr, TCK);
outport(lpt_addr, 0);
}
通过JTAG TAP控制器
// first sync everybody to the test-logic-reset state
for(i=0; i<5; i++) JTAG_clock(TMS);
// now that everybody is in a known and identical state, we can move together to another state
// let's go to Shift-IR
JTAG_clock(0);
JTAG_clock(TMS);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// Because the bits are shifted through in a chain, we must start sending the data for the device that is at the end of the chain
// so we send the 10 FPGA IR bits first
JTAG_clock(0);
JTAG_clock(1);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
// then send the 5 CPU IR bits
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(1);
JTAG_clock(0);
JTAG_clock(0 | TMS); // last bit needs to have TMS active (to exit shift-IR)
##### 查询JTAG链
统计JTAG链条上的设备数量
// go to reset state
for(i=0; i<5; i++) JTAG_clock(TMS);
// go to Shift-IR
JTAG_clock(0);
JTAG_clock(TMS);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// Send plenty of ones into the IR registers
// That makes sure all devices are in BYPASS!
for(i=0; i<999; i++) JTAG_clock(1);
JTAG_clock(1 | TMS); // last bit needs to have TMS active, to exit shift-IR
// we are in Exit1-IR, go to Shift-DR
JTAG_clock(TMS);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// Send plenty of zeros into the DR registers to flush them
for(i=0; i<1000; i++) JTAG_clock(0);
// now send ones until we receive one back
for(i=0; i<1000; i++) if(JTAG_clock(1)) break;
nbDevices = i;
printf("There are %d device(s) in the JTAG chain\n", nbDevices);
##### 获取JTAG链条上的设备的ID
// go to reset state (that loads IDCODE into IR of all the devices)
for(i=0; i<5; i++) JTAG_clock(TMS);
// go to Shift-DR
JTAG_clock(0);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// and read the IDCODES
for(i=0; i < nbDevices; i++)
{
printf("IDCODE for device %d is %08X\n", i+1, JTAG_read(32));
}
#### 执行边界扫描
attribute INSTRUCTION_LENGTH of EP1C3T100 : entity is 10;
attribute INSTRUCTION_OPCODE of EP1C3T100 : entity is
"BYPASS (1111111111), "&
"EXTEST (0000000000), "&
"SAMPLE (0000000101), "&
"IDCODE (0000000110), "&
"USERCODE (0000000111), "&
"CLAMP (0000001010), "&
"HIGHZ (0000001011), "&
"CONFIG_IO (0000001101)";
attribute INSTRUCTION_CAPTURE of EP1C3T100 : entity is "0101010101";
attribute IDCODE_REGISTER of EP1C3T100 : entity is
"0000"& --4-bit Version
"0010000010000001"& --16-bit Part Number (hex 2081)
"00001101110"& --11-bit Manufacturer's Identity
"1"; --Mandatory LSB
attribute BOUNDARY_LENGTH of EP1C3T100 : entity is 339;
attribute BOUNDARY_REGISTER of EP1C3T100 : entity is
--BSC group 0 for I/O pin 100
"0 (BC_1, IO100, input, X)," &
"1 (BC_1, *, control, 1)," &
"2 (BC_1, IO100, output3, X, 1, 1, Z)," &
--BSC group 1 for I/O pin 99
"3 (BC_1, IO99, input, X)," &
"4 (BC_1, *, control, 1)," &
"5 (BC_1, IO99, output3, X, 4, 1, Z)," &
...
...
...
--BSC group 112 for I/O pin 1
"336 (BC_1, IO1, input, X)," &
"337 (BC_1, *, control, 1)," &
"338 (BC_1, IO1, output3, X, 337, 1, Z)" ;
// go to reset state
for(i=0; i<5; i++) JTAG_clock(TMS);
// go to Shift-IR
JTAG_clock(0);
JTAG_clock(TMS);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// Assuming that IR is 10 bits long,
// that there is only one device in the chain,
// and that SAMPLE code = 0000000101b
JTAG_clock(1);
JTAG_clock(0);
JTAG_clock(1);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0);
JTAG_clock(0 or TMS); // last bit needs to have TMS active, to exit shift-IR
// we are in Exit1-IR, go to Shift-DR
JTAG_clock(TMS);
JTAG_clock(TMS);
JTAG_clock(0);
JTAG_clock(0);
// read the boundary-scan chain bits in an array called BSB
JTAG_read(BSB, 339);
printf("Status of pin 99 = %d\n, BSB[3]);