### 用FPGA实现各种数字滤波器
\\
#### FPGA滤波器实施概述
本篇部分内容来自网站[[https://www.nicholasmikstas.com/fpga-filter-implementation|FPGA滤波器实现]]的一些项目,源于一位在校学生的学习和设计- 了解并在FPGA上实现几种类型的数字滤波器器,设计的所有滤波器均为15阶滤波器,并使用16位定点数学运算,该学生有一篇PPT可供参考:\\
[[https://www.eetree.cn/wiki/_media/filter_implementation_on_a_fpga_board_xueyan_lu_06152017.pdf|FPGA滤波器实现]]\\
研究项目期间创建的Verilog源文件如下。\\
\\
### FIR滤波器
FIR滤波器是四个滤波器中最简单、最快的,它利用了预加器的对称性,而且使用加法器树来最小化组合路径延迟。\\
{{ ::fir_filter.png |}}
##### FIR_Filter.v
`define FILT_LENGTH 16
module FIR_Filter(
input clk,
input en,
input [15:0]din,
output [15:0]dout
);
reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients.
reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line.
wire [31:0]accum; //Accumulator for output filter calculation.
integer i; //Initialization integer.
genvar c; //Delay line generation variable.
reg signed [16:0]preadd_regs[7:0]; //Save calc after preadd.
reg signed [31:0]mult_regs[7:0]; //Save calc after multiplication.
reg signed [31:0]tree1_regs[3:0]; //Save calc after first layer of adder tree.
reg signed [31:0]tree2_regs[1:0]; //Save calc after first layer of adder tree.
reg signed [31:0]treeout_reg; //Save calc after complete.
//assign dout = treeout_reg[31:16];
//Calculate value in the accumulator.
assign accum = (delay_line[0] + delay_line[15]) * coeff[0] +
(delay_line[1] + delay_line[14]) * coeff[1] +
(delay_line[2] + delay_line[13]) * coeff[2] +
(delay_line[3] + delay_line[12]) * coeff[3] +
(delay_line[4] + delay_line[11]) * coeff[4] +
(delay_line[5] + delay_line[10]) * coeff[5] +
(delay_line[6] + delay_line[9]) * coeff[6] +
(delay_line[7] + delay_line[8]) * coeff[7];
//Assign upper 16-bits to output.
assign dout = accum[31:16];
initial begin
//Load the filter coefficients.
coeff[0] = 16'd2320;
coeff[1] = 16'd4143;
coeff[2] = 16'd4592;
coeff[3] = 16'd7278;
coeff[4] = 16'd8423;
coeff[5] = 16'd10389;
coeff[6] = 16'd11269;
coeff[7] = 16'd12000;
//Initialize delay line.
for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin
delay_line[i] = 16'd0;
end
//Initialize the preadder regs.
for(i = 0; i < 8; i = i+1'b1) begin
preadd_regs[i] = 17'd0;
end
//Initialize the multiplier regs.
for(i = 0; i < 8; i = i+1'b1) begin
mult_regs[i] = 32'd0;
end
//Initialize the first layer of the adder tree regs.
for(i = 0; i < 4; i = i+1'b1) begin
tree1_regs[i] = 32'd0;
end
//Initialize the second layer of the adder tree regs.
for(i = 0; i < 2; i = i+1'b1) begin
tree2_regs[i] = 32'd0;
end
//Initialize the adder tree output reg.
treeout_reg = 32'd0;
end
//Advance the data through the delay line every clock cycle.
generate
for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay
always @(posedge clk) begin
if(en) delay_line[c] <= delay_line[c-1];
end
end
endgenerate
//Update with input data.
always @(posedge clk) begin
if(en) delay_line[0] <= din;
end
endmodule
\\
##### filter_top.v
module filter_top(
input clk,
input [7:0]sw,
output [7:0]JA
);
wire [15:0]tout; //The output of the tone lookup table.
wire [15:0]fout; //The output of the FIR filter.
wire [15:0]mout; //Selected output.
wire en; //Clock enble.
wire clk_out; //264MHz System clock.
assign en = 1'b1;
clk_wiz_0 cw (.clk_in1(clk), .clk_out1(clk_out));
//clk_en ce(.clk(clk_out), .en(en));
ToneGen tg(.clk(clk_out), .en(en), .dout(tout));
FIR_Filter ff(.clk(clk_out), .en(en), .din(tout), .dout(fout));
//Choose filtered or unfiltered output based on sw0.
assign mout = sw[0] ? fout : tout;
//Take only the upper 8 bits and make it unsigned.
//assign JA = mout[15:8] + 8'd128;
assign {JA[3:0], JA[7:4]} = mout[15:8] + 8'd128;
endmodule
\\
##### ToneGen.v
`timescale 1ns/1ps
module ToneGen(
input clk,
input en,
output [15:0]dout
);
//Tone generation data. At a 44KHz sampling rate, the lookup table
//generates a 440Hz and 4.4KHz tone mixed together.
reg [15:0]tonetbl[99:0];
//Pointer into the tone table.
reg [6:0]toneptr = 7'h00;
initial begin
tonetbl[0] = 10970;
tonetbl[1] = 18151;
tonetbl[2] = 19197;
tonetbl[3] = 14105;
tonetbl[4] = 5211;
tonetbl[5] = -3704;
tonetbl[6] = -8858;
tonetbl[7] = -7914;
tonetbl[8] = -876;
tonetbl[9] = 9912;
tonetbl[10] = 20660;
tonetbl[11] = 27581;
tonetbl[12] = 28330;
tonetbl[13] = 22905;
tonetbl[14] = 13642;
tonetbl[15] = 4326;
tonetbl[16] = -1260;
tonetbl[17] = -780;
tonetbl[18] = 5767;
tonetbl[19] = 16037;
tonetbl[20] = 26244;
tonetbl[21] = 32601;
tonetbl[22] = 32767;
tonetbl[23] = 26741;
tonetbl[24] = 16863;
tonetbl[25] = 6918;
tonetbl[26] = 692;
tonetbl[27] = 527;
tonetbl[28] = 6421;
tonetbl[29] = 16037;
tonetbl[30] = 25590;
tonetbl[31] = 31295;
tonetbl[32] = 30814;
tonetbl[33] = 24149;
tonetbl[34] = 13642;
tonetbl[35] = 3081;
tonetbl[36] = -3745;
tonetbl[37] = -4494;
tonetbl[38] = 837;
tonetbl[39] = 9912;
tonetbl[40] = 18947;
tonetbl[41] = 24161;
tonetbl[42] = 23217;
tonetbl[43] = 16119;
tonetbl[44] = 5211;
tonetbl[45] = -5718;
tonetbl[46] = -12878;
tonetbl[47] = -13924;
tonetbl[48] = -8853;
tonetbl[49] = 0;
tonetbl[50] = 8853;
tonetbl[51] = 13924;
tonetbl[52] = 12878;
tonetbl[53] = 5718;
tonetbl[54] = -5211;
tonetbl[55] = -16119;
tonetbl[56] = -23217;
tonetbl[57] = -24161;
tonetbl[58] = -18947;
tonetbl[59] = -9912;
tonetbl[60] = -837;
tonetbl[61] = 4494;
tonetbl[62] = 3745;
tonetbl[63] = -3081;
tonetbl[64] = -13642;
tonetbl[65] = -24149;
tonetbl[66] = -30814;
tonetbl[67] = -31295;
tonetbl[68] = -25590;
tonetbl[69] = -16037;
tonetbl[70] = -6421;
tonetbl[71] = -527;
tonetbl[72] = -692;
tonetbl[73] = -6918;
tonetbl[74] = -16863;
tonetbl[75] = -26741;
tonetbl[76] = -32767;
tonetbl[77] = -32601;
tonetbl[78] = -26244;
tonetbl[79] = -16037;
tonetbl[80] = -5767;
tonetbl[81] = 780;
tonetbl[82] = 1260;
tonetbl[83] = -4326;
tonetbl[84] = -13642;
tonetbl[85] = -22905;
tonetbl[86] = -28330;
tonetbl[87] = -27581;
tonetbl[88] = -20660;
tonetbl[89] = -9912;
tonetbl[90] = 876;
tonetbl[91] = 7914;
tonetbl[92] = 8858;
tonetbl[93] = 3704;
tonetbl[94] = -5211;
tonetbl[95] = -14105;
tonetbl[96] = -19197;
tonetbl[97] = -18151;
tonetbl[98] = -10970;
tonetbl[99] = 0;
end
//Assign the output to the value in the lookup table
//pointed to by toneptr.
assign dout = tonetbl[toneptr];
//Increment through the tone lookup table and wrap back
//to zero when at the end.
always @(posedge clk) begin
if(en) begin
if(toneptr == 7'd99) begin
toneptr <= 7'd0;
end
else begin
toneptr <= toneptr + 1'b1;
end
end
end
endmodule
\\
##### clk_en.v
module clk_en(
input clk,
output reg en = 1'b0
);
reg [15:0]en_counter = 16'h0;
always @(posedge clk) begin
if(en_counter == 16'd5999) begin
en_counter <= 16'h0;
en <= 1'b1;
end
else begin
en_counter <= en_counter + 1'b1;
en <= 1'b0;
end
end
endmodule
\\
##### TB_ToneGen.v
module TB_ToneGen;
reg clk = 1'b0;
reg sw0 = 1'b1;
wire [7:0]JA;
wire en;
//wire [15:0]cout;
filter_top uut(.clk(clk), .sw({15'h00,sw0}), .JA({JA[3:0], JA[7:4]}));
assign en = uut.en;
//assign cout = uut.ce.en_counter;
//initial begin
// #600000 sw0 = 1'b1;
//end
//100MHz clock
always #5 clk = ~clk;
endmodule
\\
\\
#### LMS自适应滤波器
LMS自适应滤波器在单个时钟周期内完成其输出计算和权重更新。由于其单周期运行,因此存在大量的组合延迟。该滤波器只能以FIR滤波器速度的一小部分运行。\\
{{ ::lms_adaptive_filter.png |}}
##### LMS_Adapt.v
`define ADAPT_FILT_LENGTH 16
module LMS_Adapt(
input clk,
input en,
input [15:0]din,
input signed [15:0]desired,
output signed [15:0]dout,
output signed [15:0]err
);
parameter MU = 16'd32767;
reg signed [15:0]mu = MU;
reg signed [15:0]coeff[`ADAPT_FILT_LENGTH-1:0]; //Filter coefficients.
reg signed [15:0]delay_line[`ADAPT_FILT_LENGTH-1:0]; //Input delay line.
wire signed [31:0]accum; //Accumulator for output filter calculation.
wire signed [31:0]stepped; //Error after step sized applied.
integer i; //Initialization integer.
genvar c; //Delay line generation variable.
//Calculate the error and multiply it by the step size.
assign err = desired - dout;
//assign stepped = err * mu;
assign stepped = err << 15;
//Calculate value in the accumulator.
assign accum = delay_line[0]*coeff[0] +
delay_line[1]*coeff[1] +
delay_line[2]*coeff[2] +
delay_line[3]*coeff[3] +
delay_line[4]*coeff[4] +
delay_line[5]*coeff[5] +
delay_line[6]*coeff[6] +
delay_line[7]*coeff[7] +
delay_line[8]*coeff[8] +
delay_line[9]*coeff[9] +
delay_line[10]*coeff[10] +
delay_line[11]*coeff[11] +
delay_line[12]*coeff[12] +
delay_line[13]*coeff[13] +
delay_line[14]*coeff[14] +
delay_line[15]*coeff[15];
//Assign upper 16-bits to output.
assign dout = accum[31:16];
initial begin
//Load the filter coefficients.
coeff[0] = 20'd0;
coeff[1] = 20'd0;
coeff[2] = 20'd0;
coeff[3] = 20'd0;
coeff[4] = 20'd0;
coeff[5] = 20'd0;
coeff[6] = 20'd0;
coeff[7] = 20'd0;
coeff[8] = 20'd0;
coeff[9] = 20'd0;
coeff[10] = 20'd0;
coeff[11] = 20'd0;
coeff[12] = 20'd0;
coeff[13] = 20'd0;
coeff[14] = 20'd0;
coeff[15] = 20'd0;
//Initialize delay line.
for(i = 0; i < `ADAPT_FILT_LENGTH; i = i+1'b1) begin
delay_line[i] = 16'd0;
end
end
//Advance the data through the delay line every clock cycle.
generate
for (c = `ADAPT_FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay
always @(posedge clk) begin
if(en) delay_line[c] <= delay_line[c-1];
end
end
endgenerate
//Update with input data.
always @(posedge clk) begin
if(en) delay_line[0] <= din;
end
wire signed [31:0]num2[`ADAPT_FILT_LENGTH-1:0];
wire signed [15:0]n1[`ADAPT_FILT_LENGTH-1:0];
wire signed [15:0]n2[`ADAPT_FILT_LENGTH-1:0];
//Update the coefficients with the LMS algorithm.
generate
for (c = `ADAPT_FILT_LENGTH; c > 0; c = c - 1) begin: adapt_update
assign n1[c-1] = stepped[31:16];
assign num2[c-1] = n1[c-1]*delay_line[c-1];
assign n2[c-1] = num2[c-1][31:16];
always @(posedge clk) begin
if(en) coeff[c-1] <= coeff[c-1] + n2[c-1];
end
end
endgenerate
endmodule
\\
##### filter_top.v
module filter_top(
input clk,
input [7:0]sw,
output [7:0]JA
);
wire signed [15:0]tout; //Output of the tone lookup table.
wire [15:0]fout; //Output of the FIR filter.
wire [15:0]aout; //Output of the adaptive filter.
wire [15:0]err; //Adaptive filter error.
wire [15:0]lfsr_out; //16-bit Random noise variable.
wire en; //Clock enble.
wire [9:0]rnd; //10-bit noise.
wire signed [15:0]tone_and_noise; //Combination of tone and noise.
wire signed [15:0]delay_out; //Output of the delay line.
wire [15:0]mout; //Selected desired output.
wire clk19_8MHz; //19.8MHz system clock.
assign rnd = lfsr_out[15:6];
assign tone_and_noise = tout + rnd;
//assign en = 1'b1;
clk_wiz_0 cw(.clk_in1(clk), .clk_out1(clk19_8MHz), .reset(1'b0));
ToneGen tg(.clk(clk19_8MHz), .en(en), .dout(tout));
FIR_Filter ff(.clk(clk19_8MHz), .en(en), .din(tone_and_noise), .dout(fout));
LMS_Adapt af(.clk(clk19_8MHz), .en(en), .din(tone_and_noise), .desired(mout), .dout(aout), .err(err));
lfsr sr(.clk(clk19_8MHz), .en(en), .lfsr_out(lfsr_out));
clk_en ce(.clk(clk19_8MHz), .en(en));
//Choose filtered or unfiltered output based on sw0.
assign mout = sw[0] ? fout : tone_and_noise;//delay_out;
//Take only the upper 8 bits and make it unsigned.
assign {JA[3:0], JA[7:4]} = aout[15:8] + 8'd128;
//assign JA[7:0] = aout[15:8] + 8'd128;
//assign {JA[3:0], JA[7:4]} = sw[7:0];
endmodule
\\
##### ToneGen.v
`timescale 1ns/1ps
module ToneGen(
input clk,
input en,
output [15:0]dout
);
//Tone generation data. At a 44KHz sampling rate, the lookup table
//generates a 440Hz and 4.4KHz tone mixed together.
reg [15:0]tonetbl[99:0];
//Pointer into the tone table.
reg [6:0]toneptr = 7'h00;
initial begin
tonetbl[0] = 10970;
tonetbl[1] = 18151;
tonetbl[2] = 19197;
tonetbl[3] = 14105;
tonetbl[4] = 5211;
tonetbl[5] = -3704;
tonetbl[6] = -8858;
tonetbl[7] = -7914;
tonetbl[8] = -876;
tonetbl[9] = 9912;
tonetbl[10] = 20660;
tonetbl[11] = 27581;
tonetbl[12] = 28330;
tonetbl[13] = 22905;
tonetbl[14] = 13642;
tonetbl[15] = 4326;
tonetbl[16] = -1260;
tonetbl[17] = -780;
tonetbl[18] = 5767;
tonetbl[19] = 16037;
tonetbl[20] = 26244;
tonetbl[21] = 32601;
tonetbl[22] = 32767;
tonetbl[23] = 26741;
tonetbl[24] = 16863;
tonetbl[25] = 6918;
tonetbl[26] = 692;
tonetbl[27] = 527;
tonetbl[28] = 6421;
tonetbl[29] = 16037;
tonetbl[30] = 25590;
tonetbl[31] = 31295;
tonetbl[32] = 30814;
tonetbl[33] = 24149;
tonetbl[34] = 13642;
tonetbl[35] = 3081;
tonetbl[36] = -3745;
tonetbl[37] = -4494;
tonetbl[38] = 837;
tonetbl[39] = 9912;
tonetbl[40] = 18947;
tonetbl[41] = 24161;
tonetbl[42] = 23217;
tonetbl[43] = 16119;
tonetbl[44] = 5211;
tonetbl[45] = -5718;
tonetbl[46] = -12878;
tonetbl[47] = -13924;
tonetbl[48] = -8853;
tonetbl[49] = 0;
tonetbl[50] = 8853;
tonetbl[51] = 13924;
tonetbl[52] = 12878;
tonetbl[53] = 5718;
tonetbl[54] = -5211;
tonetbl[55] = -16119;
tonetbl[56] = -23217;
tonetbl[57] = -24161;
tonetbl[58] = -18947;
tonetbl[59] = -9912;
tonetbl[60] = -837;
tonetbl[61] = 4494;
tonetbl[62] = 3745;
tonetbl[63] = -3081;
tonetbl[64] = -13642;
tonetbl[65] = -24149;
tonetbl[66] = -30814;
tonetbl[67] = -31295;
tonetbl[68] = -25590;
tonetbl[69] = -16037;
tonetbl[70] = -6421;
tonetbl[71] = -527;
tonetbl[72] = -692;
tonetbl[73] = -6918;
tonetbl[74] = -16863;
tonetbl[75] = -26741;
tonetbl[76] = -32767;
tonetbl[77] = -32601;
tonetbl[78] = -26244;
tonetbl[79] = -16037;
tonetbl[80] = -5767;
tonetbl[81] = 780;
tonetbl[82] = 1260;
tonetbl[83] = -4326;
tonetbl[84] = -13642;
tonetbl[85] = -22905;
tonetbl[86] = -28330;
tonetbl[87] = -27581;
tonetbl[88] = -20660;
tonetbl[89] = -9912;
tonetbl[90] = 876;
tonetbl[91] = 7914;
tonetbl[92] = 8858;
tonetbl[93] = 3704;
tonetbl[94] = -5211;
tonetbl[95] = -14105;
tonetbl[96] = -19197;
tonetbl[97] = -18151;
tonetbl[98] = -10970;
tonetbl[99] = 0;
end
//Assign the output to the value in the lookup table
//pointed to by toneptr.
assign dout = tonetbl[toneptr];
//Increment through the tone lookup table and wrap back
//to zero when at the end.
always @(posedge clk) begin
if(en) begin
if(toneptr == 7'd99) begin
toneptr <= 7'd0;
end
else begin
toneptr <= toneptr + 1'b1;
end
end
end
endmodule
\\
##### FIR_Filter.v
`define FILT_LENGTH 16
module FIR_Filter(
input clk,
input en,
input [15:0]din,
output [15:0]dout
);
reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients.
reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line.
wire [31:0]accum; //Accumulator for output filter calculation.
integer i; //Initialization integer.
genvar c; //Delay line generation variable.
//Calculate value in the accumulator.
assign accum = (delay_line[0] + delay_line[15]) * coeff[0] +
(delay_line[1] + delay_line[14]) * coeff[1] +
(delay_line[2] + delay_line[13]) * coeff[2] +
(delay_line[3] + delay_line[12]) * coeff[3] +
(delay_line[4] + delay_line[11]) * coeff[4] +
(delay_line[5] + delay_line[10]) * coeff[5] +
(delay_line[6] + delay_line[9]) * coeff[6] +
(delay_line[7] + delay_line[8]) * coeff[7];
//Assign upper 16-bits to output.
assign dout = accum[31:16];
initial begin
//Load the filter coefficients.
coeff[0] = 16'd2552;
coeff[1] = 16'd4557;
coeff[2] = 16'd5051;
coeff[3] = 16'd8006;
coeff[4] = 16'd9265;
coeff[5] = 16'd11427;
coeff[6] = 16'd12396;
coeff[7] = 16'd13200;
//Initialize delay line.
for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin
delay_line[i] = 16'd0;
end
end
//Advance the data through the delay line every clock cycle.
generate
for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay
always @(posedge clk) begin
if(en) delay_line[c] <= delay_line[c-1];
end
end
endgenerate
//Update with input data.
always @(posedge clk) begin
if(en) delay_line[0] <= din;
end
endmodule
\\
##### clk_en.v
module clk_en(
input clk,
output reg en = 1'b0
);
reg [15:0]en_counter = 16'h0;
always @(posedge clk) begin
if(en_counter == 16'd449) begin
en_counter <= 16'h0;
en <= 1'b1;
end
else begin
en_counter <= en_counter + 1'b1;
en <= 1'b0;
end
end
endmodule
\\
##### lfsr.v
`timescale 1ns / 1ps
module lfsr(
input clk,
input en,
input rst,
output [15:0]lfsr_out
);
//Create a 16-bit linear feedback shift register with
//maximal polynomial x^16 + x^14 + x^13 + x^11 + 1.
reg [15:0]lfsr = 16'd1;
wire feedback;
assign feedback = ((lfsr[15] ^ lfsr[13]) ^ lfsr[12]) ^ lfsr[10];
assign lfsr_out = lfsr;
//Update the linear feedback shift register.
always @(posedge clk) begin
if(rst) lfsr <= 16'd1;
else if(en) lfsr <= {lfsr[14:0], feedback};
end
endmodule
\\
##### TB_LMS_Adapt.v
module TB_LMS_Adapt;
reg clk = 1'b0;
reg [7:0]sw = 1'b1;
wire [7:0]JA;
wire [15:0]d;
wire [15:0]y;
wire [15:0]e;
wire [15:0]n1;
filter_top uut(.clk(clk), .sw(sw), .JA(JA));
assign d = uut.fout;
assign y = uut.aout;
assign e = uut.err;
assign n1 = uut.af.n1[0];
always #5 clk = ~clk;
initial begin
//#20000000 sw[0] = 1'b1;
//#40000 sw[0] = 1'b1;
end
endmodule
\\
### 块FIR滤波器
块FIR滤波器的创建是对块概念的初步测试,因为其计算块比LMS滤波器计算块简单得多。滤波器的核心由四个计算模块组成,每个时钟周期对四个数据样本进行操作。\\
{{ ::block_fir_filter.png |}}
##### Block_FIR.v
`timescale 1ns / 1ps
module Block_FIR(
input clk,
input en,
input signed [15:0]x0_in,
input signed [15:0]x1_in,
input signed [15:0]x2_in,
input signed [15:0]x3_in,
output reg signed [15:0]x0_out = 16'd0,
output reg signed [15:0]x1_out = 16'd0,
output reg signed [15:0]x2_out = 16'd0,
output reg signed [15:0]x3_out = 16'd0,
output signed [15:0]u0,
output signed [15:0]u1,
output signed [15:0]u2,
output signed [15:0]u3
);
//Filter coefficients.
parameter b0 = 16'd1;
parameter b1 = 16'd1;
parameter b2 = 16'd1;
parameter b3 = 16'd1;
//Coefficient registers.
reg signed [15:0]_b0 = b0;
reg signed [15:0]_b1 = b1;
reg signed [15:0]_b2 = b2;
reg signed [15:0]_b3 = b3;
//Register unit.
always @(posedge clk) begin
if(en) begin
x0_out <= x0_in;
x1_out <= x1_in;
x2_out <= x2_in;
x3_out <= x3_in;
end
end
/******************************IPC1******************************/
//Multiplier outputs.
wire signed [31:0]IPC1_mult0;
wire signed [31:0]IPC1_mult1;
wire signed [31:0]IPC1_mult2;
wire signed [31:0]IPC1_mult3;
//Adder outputs.
wire signed [31:0]IPC1_add0;
wire signed [31:0]IPC1_add1;
wire signed [31:0]IPC1_out;
//Multiply inputs with coefficients.
assign IPC1_mult0 = x3_in * _b0;
assign IPC1_mult1 = x2_in * _b1;
assign IPC1_mult2 = x1_in * _b2;
assign IPC1_mult3 = x0_in * _b3;
//Add multiplied values together.
assign IPC1_add0 = IPC1_mult0 + IPC1_mult1;
assign IPC1_add1 = IPC1_mult2 + IPC1_mult3;
assign IPC1_out = IPC1_add0 + IPC1_add1;
//Assign output.
assign u3 = IPC1_out[31:16];
/******************************IPC2******************************/
//Multiplier outputs.
wire signed [31:0]IPC2_mult0;
wire signed [31:0]IPC2_mult1;
wire signed [31:0]IPC2_mult2;
wire signed [31:0]IPC2_mult3;
//Adder outputs.
wire signed [31:0]IPC2_add0;
wire signed [31:0]IPC2_add1;
wire signed [31:0]IPC2_out;
//Multiply inputs with coefficients.
assign IPC2_mult0 = x2_in * _b0;
assign IPC2_mult1 = x1_in * _b1;
assign IPC2_mult2 = x0_in * _b2;
assign IPC2_mult3 = x3_out * _b3;
//Add multiplied values together.
assign IPC2_add0 = IPC2_mult0 + IPC2_mult1;
assign IPC2_add1 = IPC2_mult2 + IPC2_mult3;
assign IPC2_out = IPC2_add0 + IPC2_add1;
//Assign output.
assign u2 = IPC2_out[31:16];
/******************************IPC3******************************/
//Multiplier outputs.
wire signed [31:0]IPC3_mult0;
wire signed [31:0]IPC3_mult1;
wire signed [31:0]IPC3_mult2;
wire signed [31:0]IPC3_mult3;
//Adder outputs.
wire signed [31:0]IPC3_add0;
wire signed [31:0]IPC3_add1;
wire signed [31:0]IPC3_out;
//Multiply inputs with coefficients.
assign IPC3_mult0 = x1_in * _b0;
assign IPC3_mult1 = x0_in * _b1;
assign IPC3_mult2 = x3_out * _b2;
assign IPC3_mult3 = x2_out * _b3;
//Add multiplied values together.
assign IPC3_add0 = IPC3_mult0 + IPC3_mult1;
assign IPC3_add1 = IPC3_mult2 + IPC3_mult3;
assign IPC3_out = IPC3_add0 + IPC3_add1;
//Assign output.
assign u1 = IPC3_out[31:16];
/******************************IPC4******************************/
//Multiplier outputs.
wire signed [31:0]IPC4_mult0;
wire signed [31:0]IPC4_mult1;
wire signed [31:0]IPC4_mult2;
wire signed [31:0]IPC4_mult3;
//Adder outputs.
wire signed [31:0]IPC4_add0;
wire signed [31:0]IPC4_add1;
wire signed [31:0]IPC4_out;
//Multiply inputs with coefficients.
assign IPC4_mult0 = x0_in * _b0;
assign IPC4_mult1 = x3_out * _b1;
assign IPC4_mult2 = x2_out * _b2;
assign IPC4_mult3 = x1_out * _b3;
//Add multiplied values together.
assign IPC4_add0 = IPC4_mult0 + IPC4_mult1;
assign IPC4_add1 = IPC4_mult2 + IPC4_mult3;
assign IPC4_out = IPC4_add0 + IPC4_add1;
//Assign output.
assign u0 = IPC4_out[31:16];
endmodule
\\
##### Block_FIR_Top.v
`timescale 1ns / 1ps
module Block_FIR_Top(
input clk,
input [7:0]sw,
output [7:0]JA
);
wire clk_100MHz;
wire clk_25MHz;
wire en;
wire signed [15:0]tonegen_out;
//Data divider outputs.
wire en_out;
wire signed [15:0]d0_out;
wire signed [15:0]d1_out;
wire signed [15:0]d2_out;
wire signed [15:0]d3_out;
//FIR f1 outputs
wire signed [15:0]f1_x0_out;
wire signed [15:0]f1_x1_out;
wire signed [15:0]f1_x2_out;
wire signed [15:0]f1_x3_out;
wire signed [15:0]f1_u0;
wire signed [15:0]f1_u1;
wire signed [15:0]f1_u2;
wire signed [15:0]f1_u3;
//FIR f2 outputs
wire signed [15:0]f2_x0_out;
wire signed [15:0]f2_x1_out;
wire signed [15:0]f2_x2_out;
wire signed [15:0]f2_x3_out;
wire signed [15:0]f2_u0;
wire signed [15:0]f2_u1;
wire signed [15:0]f2_u2;
wire signed [15:0]f2_u3;
//FIR f3 outputs
wire signed [15:0]f3_x0_out;
wire signed [15:0]f3_x1_out;
wire signed [15:0]f3_x2_out;
wire signed [15:0]f3_x3_out;
wire signed [15:0]f3_u0;
wire signed [15:0]f3_u1;
wire signed [15:0]f3_u2;
wire signed [15:0]f3_u3;
//FIR f4 outputs
wire signed [15:0]f4_x0_out;
wire signed [15:0]f4_x1_out;
wire signed [15:0]f4_x2_out;
wire signed [15:0]f4_x3_out;
wire signed [15:0]f4_u0;
wire signed [15:0]f4_u1;
wire signed [15:0]f4_u2;
wire signed [15:0]f4_u3;
//Block filter outputs.
wire signed [15:0]y0;
wire signed [15:0]y1;
wire signed [15:0]y2;
wire signed [15:0]y3;
wire [15:0]serial_dout; //Serialized output.
wire [15:0]mout; //Selected output.
assign en = 1'b1;
clk_wiz_0 cw(.clk_in1(clk), .clk_out1(clk_100MHz), .clk_out2(clk_25MHz));
ToneGen tg(.clk(clk_100MHz), .en(en), .dout(tonegen_out));
Data_Div4 dd(.clk(clk_100MHz), .en(en), .din(tonegen_out), .en_out(en_out),
.d0_out(d0_out), .d1_out(d1_out), .d2_out(d2_out), .d3_out(d3_out));
//Build 16-tap block FIR filter.
Block_FIR #(.b0(16'd2320), .b1(16'd4143), .b2(16'd4592), .b3(16'd7278))f1(.clk(clk_25MHz), .en(en),
.x0_in(d0_out), .x1_in(d1_out), .x2_in(d2_out), .x3_in(d3_out),
.x0_out(f1_x0_out), .x1_out(f1_x1_out), .x2_out(f1_x2_out), .x3_out(f1_x3_out),
.u0(f1_u0), .u1(f1_u1), .u2(f1_u2), .u3(f1_u3));
Block_FIR #(.b0(16'd8423), .b1(16'd10389), .b2(16'd11269), .b3(16'd12000))f2(.clk(clk_25MHz), .en(en),
.x0_in(f1_x0_out), .x1_in(f1_x1_out), .x2_in(f1_x2_out), .x3_in(f1_x3_out),
.x0_out(f2_x0_out), .x1_out(f2_x1_out), .x2_out(f2_x2_out), .x3_out(f2_x3_out),
.u0(f2_u0), .u1(f2_u1), .u2(f2_u2), .u3(f2_u3));
Block_FIR #(.b0(16'd12000), .b1(16'd11269), .b2(16'd10389), .b3(16'd8423))f3(.clk(clk_25MHz), .en(en),
.x0_in(f2_x0_out), .x1_in(f2_x1_out), .x2_in(f2_x2_out), .x3_in(f2_x3_out),
.x0_out(f3_x0_out), .x1_out(f3_x1_out), .x2_out(f3_x2_out), .x3_out(f3_x3_out),
.u0(f3_u0), .u1(f3_u1), .u2(f3_u2), .u3(f3_u3));
Block_FIR #(.b0(16'd7278), .b1(16'd4592), .b2(16'd4143), .b3(16'd2320))f4(.clk(clk_25MHz), .en(en),
.x0_in(f3_x0_out), .x1_in(f3_x1_out), .x2_in(f3_x2_out), .x3_in(f3_x3_out),
.x0_out(f4_x0_out), .x1_out(f4_x1_out), .x2_out(f4_x2_out), .x3_out(f4_x3_out),
.u0(f4_u0), .u1(f4_u1), .u2(f4_u2), .u3(f4_u3));
//Add outputs together.
assign y0 = f1_u0 + f2_u0 + f3_u0 + f4_u0;
assign y1 = f1_u1 + f2_u1 + f3_u1 + f4_u1;
assign y2 = f1_u2 + f2_u2 + f3_u2 + f4_u2;
assign y3 = f1_u3 + f2_u3 + f3_u3 + f4_u3;
//Serialize the output data.
Data_Mult4 dm(.clk(clk_100MHz), .en(en), .d0_in(y0), .d1_in(y1), .d2_in(y2), .d3_in(y3), .dout(serial_dout));
//Choose filtered or unfiltered output based on sw0.
assign mout = sw[0] ? serial_dout : tonegen_out;
//Take only the upper 8 bits and make it unsigned.
//assign JA = mout[15:8] + 8'd128;
assign {JA[3:0], JA[7:4]} = mout[15:8] + 8'd128;
endmodule
\\
##### ToneGen.v
`timescale 1ns/1ps
module ToneGen(
input clk,
input en,
output [15:0]dout
);
//Tone generation data. At a 44KHz sampling rate, the lookup table
//generates a 440Hz and 4.4KHz tone mixed together.
reg [15:0]tonetbl[99:0];
//Pointer into the tone table.
reg [6:0]toneptr = 7'h00;
initial begin
tonetbl[0] = 10970;
tonetbl[1] = 18151;
tonetbl[2] = 19197;
tonetbl[3] = 14105;
tonetbl[4] = 5211;
tonetbl[5] = -3704;
tonetbl[6] = -8858;
tonetbl[7] = -7914;
tonetbl[8] = -876;
tonetbl[9] = 9912;
tonetbl[10] = 20660;
tonetbl[11] = 27581;
tonetbl[12] = 28330;
tonetbl[13] = 22905;
tonetbl[14] = 13642;
tonetbl[15] = 4326;
tonetbl[16] = -1260;
tonetbl[17] = -780;
tonetbl[18] = 5767;
tonetbl[19] = 16037;
tonetbl[20] = 26244;
tonetbl[21] = 32601;
tonetbl[22] = 32767;
tonetbl[23] = 26741;
tonetbl[24] = 16863;
tonetbl[25] = 6918;
tonetbl[26] = 692;
tonetbl[27] = 527;
tonetbl[28] = 6421;
tonetbl[29] = 16037;
tonetbl[30] = 25590;
tonetbl[31] = 31295;
tonetbl[32] = 30814;
tonetbl[33] = 24149;
tonetbl[34] = 13642;
tonetbl[35] = 3081;
tonetbl[36] = -3745;
tonetbl[37] = -4494;
tonetbl[38] = 837;
tonetbl[39] = 9912;
tonetbl[40] = 18947;
tonetbl[41] = 24161;
tonetbl[42] = 23217;
tonetbl[43] = 16119;
tonetbl[44] = 5211;
tonetbl[45] = -5718;
tonetbl[46] = -12878;
tonetbl[47] = -13924;
tonetbl[48] = -8853;
tonetbl[49] = 0;
tonetbl[50] = 8853;
tonetbl[51] = 13924;
tonetbl[52] = 12878;
tonetbl[53] = 5718;
tonetbl[54] = -5211;
tonetbl[55] = -16119;
tonetbl[56] = -23217;
tonetbl[57] = -24161;
tonetbl[58] = -18947;
tonetbl[59] = -9912;
tonetbl[60] = -837;
tonetbl[61] = 4494;
tonetbl[62] = 3745;
tonetbl[63] = -3081;
tonetbl[64] = -13642;
tonetbl[65] = -24149;
tonetbl[66] = -30814;
tonetbl[67] = -31295;
tonetbl[68] = -25590;
tonetbl[69] = -16037;
tonetbl[70] = -6421;
tonetbl[71] = -527;
tonetbl[72] = -692;
tonetbl[73] = -6918;
tonetbl[74] = -16863;
tonetbl[75] = -26741;
tonetbl[76] = -32767;
tonetbl[77] = -32601;
tonetbl[78] = -26244;
tonetbl[79] = -16037;
tonetbl[80] = -5767;
tonetbl[81] = 780;
tonetbl[82] = 1260;
tonetbl[83] = -4326;
tonetbl[84] = -13642;
tonetbl[85] = -22905;
tonetbl[86] = -28330;
tonetbl[87] = -27581;
tonetbl[88] = -20660;
tonetbl[89] = -9912;
tonetbl[90] = 876;
tonetbl[91] = 7914;
tonetbl[92] = 8858;
tonetbl[93] = 3704;
tonetbl[94] = -5211;
tonetbl[95] = -14105;
tonetbl[96] = -19197;
tonetbl[97] = -18151;
tonetbl[98] = -10970;
tonetbl[99] = 0;
end
//Assign the output to the value in the lookup table
//pointed to by toneptr.
assign dout = tonetbl[toneptr];
//Increment through the tone lookup table and wrap back
//to zero when at the end.
always @(posedge clk) begin
if(en) begin
if(toneptr == 7'd99) begin
toneptr <= 7'd0;
end
else begin
toneptr <= toneptr + 1'b1;
end
end
end
endmodule
\\
##### Data_Div4.v
`timescale 1ns / 1ps
module Data_Div4(
input clk,
input en,
input [15:0]din,
output reg en_out = 1'b0,
output reg [15:0]d0_out = 16'd0,
output reg [15:0]d1_out = 16'd0,
output reg [15:0]d2_out = 16'd0,
output reg [15:0]d3_out = 16'd0
);
reg [1:0]count = 2'd0;
//Internal registers for holding data.
reg [15:0]d0 = 16'd0;
reg [15:0]d1 = 16'd0;
reg [15:0]d2 = 16'd0;
always @(posedge clk) begin
if(en) begin
count <= count + 1'b1;
if(count == 2'b00) begin
d0 <= din;
en_out <= 1'b0;
end
else if(count == 2'b01) begin
d1 <= din;
en_out <= 1'b0;
end
else if(count == 2'b10) begin
d2 <= din;
en_out <= 1'b0;
end
else begin
d0_out <= d0;
d1_out <= d1;
d2_out <= d2;
d3_out <= din;
en_out <= 1'b1;
end
end
end
endmodule
\\
##### Data_Mult4.v
`timescale 1ns / 1ps
module Data_Mult4(
input clk,
input en,
input [15:0]d0_in,
input [15:0]d1_in,
input [15:0]d2_in,
input [15:0]d3_in,
output reg [15:0]dout = 16'd0
);
reg [1:0]count = 2'd0;
//Internal registers for holding data.
reg [15:0]d0 = 16'd0;
reg [15:0]d1 = 16'd0;
reg [15:0]d2 = 16'd0;
reg [15:0]d3 = 16'd0;
always @(posedge clk) begin
if(en) begin
count <= count + 1'b1;
if(count == 2'b00) begin
dout <= d0;
end
else if(count == 2'b01) begin
dout <= d1;
end
else if(count == 2'b10) begin
dout <= d2;
end
else begin
d0 <= d0_in;
d1 <= d1_in;
d2 <= d2_in;
d3 <= d3_in;
dout <= d3;
end
end
end
endmodule
\\
##### Block_FIR_TB.v
`timescale 1ns / 1ps
module Block_FIR_TB;
reg clk = 1'b0;
reg [7:0]sw = 8'd0;
wire [7:0]JA;
Block_FIR_Top uut(.clk(clk), .sw(sw), .JA(JA));
initial begin
#50000 sw = 8'd1;
end
always #5 clk = ~clk;
endmodule
\\
### LMS滤波器
最后也是最复杂的滤波器是Block LMS滤波器。它还具有四个计算模块,一次可以处理四个数据样本,但是它具有一个简单的状态机,可以将其操作分成两个时钟周期。一个时钟周期计算输出值,而另一个时钟周期更新权重。\\
{{ ::block_lms_filter.png |}}
##### BLMS_Block.v
`timescale 1ns / 1ps
module BLMS_Block(
input clk, //Filter clock.
input x_en, //X registers enable.
input w_en, //Weight registers enable.
input mux_sel, //MUX selection input.
input dmux_sel, //DMUX selection input.
input signed [15:0]xin0, //
input signed [15:0]xin1, //16-bit Data input.
input signed [15:0]xin2, //
input signed [15:0]xin3, //
input signed [15:0]r0, //
input signed [15:0]r1, //Weight adjust input.
input signed [15:0]r2, //
input signed [15:0]r3, //
output signed [15:0]u0, //
output signed [15:0]u1, //u output for calculating y.
output signed [15:0]u2, //
output signed [15:0]u3, //
output reg signed [15:0]xout0 = 16'd0, //
output reg signed [15:0]xout1 = 16'd0, //Data to cascade
output reg signed [15:0]xout2 = 16'd0, //to the next block.
output reg signed [15:0]xout3 = 16'd0 //
);
//Filter weights.
parameter b0 = 16'd0;
parameter b1 = 16'd0;
parameter b2 = 16'd0;
parameter b3 = 16'd0;
//Weight registers.
reg signed [15:0]_b0 = b0;
reg signed [15:0]_b1 = b1;
reg signed [15:0]_b2 = b2;
reg signed [15:0]_b3 = b3;
/*************************Register Unit**************************/
always @(posedge clk) begin
if(x_en) begin
xout0 <= xin0;
xout1 <= xin1;
xout2 <= xin2;
xout3 <= xin3;
end
end
/******************************IPC1******************************/
//Multiplier inputs.
wire signed [15:0]IPC1_mult0_in;
wire signed [15:0]IPC1_mult1_in;
wire signed [15:0]IPC1_mult2_in;
wire signed [15:0]IPC1_mult3_in;
//Multiplier outputs.
wire signed [31:0]IPC1_mult0_out;
wire signed [31:0]IPC1_mult1_out;
wire signed [31:0]IPC1_mult2_out;
wire signed [31:0]IPC1_mult3_out;
//Adder outputs.
wire signed [31:0]IPC1_add0;
wire signed [31:0]IPC1_add1;
wire signed [31:0]IPC1_out;
//Do multiplications.
assign IPC1_mult0_out = xin3 * IPC1_mult0_in;
assign IPC1_mult1_out = xin2 * IPC1_mult1_in;
assign IPC1_mult2_out = xin1 * IPC1_mult2_in;
assign IPC1_mult3_out = xin0 * IPC1_mult3_in;
//Do additions.
assign IPC1_add0 = IPC1_mult0_out + IPC1_mult1_out;
assign IPC1_add1 = IPC1_mult2_out + IPC1_mult3_out;
assign IPC1_out = IPC1_add0 + IPC1_add1;
/******************************IPC2******************************/
//Multiplier inputs.
wire signed [15:0]IPC2_mult0_in;
wire signed [15:0]IPC2_mult1_in;
wire signed [15:0]IPC2_mult2_in;
wire signed [15:0]IPC2_mult3_in;
//Multiplier outputs.
wire signed [31:0]IPC2_mult0_out;
wire signed [31:0]IPC2_mult1_out;
wire signed [31:0]IPC2_mult2_out;
wire signed [31:0]IPC2_mult3_out;
//Adder outputs.
wire signed [31:0]IPC2_add0;
wire signed [31:0]IPC2_add1;
wire signed [31:0]IPC2_out;
//Do multiplications.
assign IPC2_mult0_out = xin2 * IPC2_mult0_in;
assign IPC2_mult1_out = xin1 * IPC2_mult1_in;
assign IPC2_mult2_out = xin0 * IPC2_mult2_in;
assign IPC2_mult3_out = xout3 * IPC2_mult3_in;
//Do additions.
assign IPC2_add0 = IPC2_mult0_out + IPC2_mult1_out;
assign IPC2_add1 = IPC2_mult2_out + IPC2_mult3_out;
assign IPC2_out = IPC2_add0 + IPC2_add1;
/******************************IPC3******************************/
//Multiplier inputs.
wire signed [15:0]IPC3_mult0_in;
wire signed [15:0]IPC3_mult1_in;
wire signed [15:0]IPC3_mult2_in;
wire signed [15:0]IPC3_mult3_in;
//Multiplier outputs.
wire signed [31:0]IPC3_mult0_out;
wire signed [31:0]IPC3_mult1_out;
wire signed [31:0]IPC3_mult2_out;
wire signed [31:0]IPC3_mult3_out;
//Adder outputs.
wire signed [31:0]IPC3_add0;
wire signed [31:0]IPC3_add1;
wire signed [31:0]IPC3_out;
//Do multiplications.
assign IPC3_mult0_out = xin1 * IPC3_mult0_in;
assign IPC3_mult1_out = xin0 * IPC3_mult1_in;
assign IPC3_mult2_out = xout3 * IPC3_mult2_in;
assign IPC3_mult3_out = xout2 * IPC3_mult3_in;
//Do additions.
assign IPC3_add0 = IPC3_mult0_out + IPC3_mult1_out;
assign IPC3_add1 = IPC3_mult2_out + IPC3_mult3_out;
assign IPC3_out = IPC3_add0 + IPC3_add1;
/******************************IPC4******************************/
//Multiplier inputs.
wire signed [15:0]IPC4_mult0_in;
wire signed [15:0]IPC4_mult1_in;
wire signed [15:0]IPC4_mult2_in;
wire signed [15:0]IPC4_mult3_in;
//Multiplier outputs.
wire signed [31:0]IPC4_mult0_out;
wire signed [31:0]IPC4_mult1_out;
wire signed [31:0]IPC4_mult2_out;
wire signed [31:0]IPC4_mult3_out;
//Adder outputs.
wire signed [31:0]IPC4_add0;
wire signed [31:0]IPC4_add1;
wire signed [31:0]IPC4_out;
//Do multiplications.
assign IPC4_mult0_out = xin0 * IPC4_mult0_in;
assign IPC4_mult1_out = xout3 * IPC4_mult1_in;
assign IPC4_mult2_out = xout2 * IPC4_mult2_in;
assign IPC4_mult3_out = xout1 * IPC4_mult3_in;
//Do additions.
assign IPC4_add0 = IPC4_mult0_out + IPC4_mult1_out;
assign IPC4_add1 = IPC4_mult2_out + IPC4_mult3_out;
assign IPC4_out = IPC4_add0 + IPC4_add1;
/***************************DMUX Unit****************************/
//DMUX outputs.
wire signed [15:0]dmux1_out0;
wire signed [15:0]dmux1_out1;
wire signed [15:0]dmux2_out0;
wire signed [15:0]dmux2_out1;
wire signed [15:0]dmux3_out0;
wire signed [15:0]dmux3_out1;
wire signed [15:0]dmux4_out0;
wire signed [15:0]dmux4_out1;
//Assign outputs.
assign dmux1_out0 = dmux_sel ? 16'd0 : IPC1_out[31:16];
assign dmux1_out1 = dmux_sel ? IPC1_out[31:16] : 16'd0;
assign dmux2_out0 = dmux_sel ? 16'd0 : IPC2_out[31:16];
assign dmux2_out1 = dmux_sel ? IPC2_out[31:16] : 16'd0;
assign dmux3_out0 = dmux_sel ? 16'd0 : IPC3_out[31:16];
assign dmux3_out1 = dmux_sel ? IPC3_out[31:16] : 16'd0;
assign dmux4_out0 = dmux_sel ? 16'd0 : IPC4_out[31:16];
assign dmux4_out1 = dmux_sel ? IPC4_out[31:16] : 16'd0;
//Assign u values.
assign u3 = dmux1_out1;
assign u2 = dmux2_out1;
assign u1 = dmux3_out1;
assign u0 = dmux4_out1;
/****************************WU Unit*****************************/
always @(posedge clk) begin
if(w_en) begin
_b0 <= _b0 + dmux1_out0;
_b1 <= _b1 + dmux2_out0;
_b2 <= _b2 + dmux3_out0;
_b3 <= _b3 + dmux4_out0;
end
end
/****************************MUX Unit****************************/
//MUX outputs.
wire signed [15:0]mux0_out;
wire signed [15:0]mux1_out;
wire signed [15:0]mux2_out;
wire signed [15:0]mux3_out;
//Assign MUX outputs.
assign mux0_out = mux_sel ? _b0 : r0;
assign mux1_out = mux_sel ? _b1 : r1;
assign mux2_out = mux_sel ? _b2 : r2;
assign mux3_out = mux_sel ? _b3 : r3;
//Assign MUX outputs to IPC inputs.
assign IPC1_mult0_in = mux0_out;
assign IPC2_mult0_in = mux0_out;
assign IPC3_mult0_in = mux0_out;
assign IPC4_mult0_in = mux0_out;
assign IPC1_mult1_in = mux1_out;
assign IPC2_mult1_in = mux1_out;
assign IPC3_mult1_in = mux1_out;
assign IPC4_mult1_in = mux1_out;
assign IPC1_mult2_in = mux2_out;
assign IPC2_mult2_in = mux2_out;
assign IPC3_mult2_in = mux2_out;
assign IPC4_mult2_in = mux2_out;
assign IPC1_mult3_in = mux3_out;
assign IPC2_mult3_in = mux3_out;
assign IPC3_mult3_in = mux3_out;
assign IPC4_mult3_in = mux3_out;
endmodule
\\
##### BLMS_ECU.v
`timescale 1ns / 1ps
module BLMS_ECU(
input clk, //Filter clock.
input r_en, //Weight adjust registers enable.
input signed [15:0]din0, //
input signed [15:0]din1, //Desired inputs.
input signed [15:0]din2, //
input signed [15:0]din3, //
input signed [15:0]yin0, //
input signed [15:0]yin1, //From filter output.
input signed [15:0]yin2, //
input signed [15:0]yin3, //
output reg signed [15:0]r0 = 16'd0, //
output reg signed [15:0]r1 = 16'd0, //Stepped error output.
output reg signed [15:0]r2 = 16'd0, //
output reg signed [15:0]r3 = 16'd0 //
);
//Adder outputs.
wire signed [15:0]add_out0;
wire signed [15:0]add_out1;
wire signed [15:0]add_out2;
wire signed [15:0]add_out3;
//Mu outputs.
wire signed [31:0]mu0;
wire signed [31:0]mu1;
wire signed [31:0]mu2;
wire signed [31:0]mu3;
//Assign outputs.
assign add_out0 = din0 - yin0;
assign add_out1 = din1 - yin1;
assign add_out2 = din2 - yin2;
assign add_out3 = din3 - yin3;
//Multiply error by mu (hard coded).
assign mu0 = add_out0 << 15;
assign mu1 = add_out1 << 15;
assign mu2 = add_out2 << 15;
assign mu3 = add_out3 << 15;
//Update delay registers.
always @(posedge clk) begin
if(r_en) begin
r0 <= mu0[31:16];
r1 <= mu1[31:16];
r2 <= mu2[31:16];
r3 <= mu3[31:16];
end
end
endmodule
\\
##### BLMS_Top.v
`timescale 1ns / 1ps
module BLMS_Top(
input clk,
input [7:0]sw,
output [7:0]JA
);
wire clk_50MHz;
wire clk_25MHz;
wire en;
wire signed [15:0]tonegen_out; //Output of the tone lookup table.
wire signed [15:0]fout; //Output of the FIR filter.
wire signed [15:0]lfsr_out; //16-bit Random noise variable.
wire signed [9:0]rnd; //10-bit noise.
wire signed [15:0]tone_and_noise; //Combination of tone and noise.
wire signed [15:0]serial_dout; //Serialized output.
//Selected desired output.
wire signed [15:0]mout;
//Parallelized desired output.
wire signed [15:0]dout0;
wire signed [15:0]dout1;
wire signed [15:0]dout2;
wire signed [15:0]dout3;
//Parallelized input to BLMS filter.
wire signed [15:0]blms_din0;
wire signed [15:0]blms_din1;
wire signed [15:0]blms_din2;
wire signed [15:0]blms_din3;
//Stepped error.
wire signed [15:0]r0;
wire signed [15:0]r1;
wire signed [15:0]r2;
wire signed [15:0]r3;
//BLMS block1 outputs.
wire signed [15:0]b1_x0_out;
wire signed [15:0]b1_x1_out;
wire signed [15:0]b1_x2_out;
wire signed [15:0]b1_x3_out;
wire signed [15:0]b1_u0;
wire signed [15:0]b1_u1;
wire signed [15:0]b1_u2;
wire signed [15:0]b1_u3;
//BLMS block2 outputs.
wire signed [15:0]b2_x0_out;
wire signed [15:0]b2_x1_out;
wire signed [15:0]b2_x2_out;
wire signed [15:0]b2_x3_out;
wire signed [15:0]b2_u0;
wire signed [15:0]b2_u1;
wire signed [15:0]b2_u2;
wire signed [15:0]b2_u3;
//BLMS block3 outputs.
wire signed [15:0]b3_x0_out;
wire signed [15:0]b3_x1_out;
wire signed [15:0]b3_x2_out;
wire signed [15:0]b3_x3_out;
wire signed [15:0]b3_u0;
wire signed [15:0]b3_u1;
wire signed [15:0]b3_u2;
wire signed [15:0]b3_u3;
//BLMS block4 outputs.
wire signed [15:0]b4_x0_out;
wire signed [15:0]b4_x1_out;
wire signed [15:0]b4_x2_out;
wire signed [15:0]b4_x3_out;
wire signed [15:0]b4_u0;
wire signed [15:0]b4_u1;
wire signed [15:0]b4_u2;
wire signed [15:0]b4_u3;
//BLMS filter outputs.
wire signed [15:0]y0;
wire signed [15:0]y1;
wire signed [15:0]y2;
wire signed [15:0]y3;
reg [1:0]en_counter = 2'b00;
//Generate enable signal for BLMS filter.
always@(posedge clk_50MHz) begin
en_counter <= en_counter + 1'b1;
end
//Toggle enable signal.
assign en = (en_counter == 2'b10|| en_counter == 2'b11) ? 1'b1 : 1'b0;
//Instantiate clock generator.
clk_wiz_0 clk_wiz(.clk_in1(clk), .clk_out1(clk_50MHz), .clk_out2(clk_25MHz));
//Instantiate tone generator.
ToneGen tg(.clk(clk_50MHz), .en(1'b1), .dout(tonegen_out));
//Instatiate LFSR for random noise generation.
lfsr lr(.clk(clk_50MHz), .en(1'b1), .rst(1'b0), .lfsr_out(lfsr_out));
//Add the random noise to the tone.
assign rnd = lfsr_out[15:6];
assign tone_and_noise = tonegen_out + rnd;
//Instantiate the FIR filter.
FIR_Filter ff(.clk(clk_50MHz), .en(1'b1), .din(tone_and_noise), .dout(fout));
//Choose filtered or unfiltered output based on sw0.
assign mout = sw[0] ? fout : tone_and_noise;
//Instantiate desired out div 4.
Data_Div4 d4_fir(.clk(clk_50MHz), .en(1'b1), .din(mout), .d0_out(dout0),
.d1_out(dout1), .d2_out(dout2), .d3_out(dout3));
//Instantiate BLMS filter div 4.
Data_Div4 d4_blms(.clk(clk_50MHz), .en(1'b1), .din(tone_and_noise), .d0_out(blms_din0),
.d1_out(blms_din1), .d2_out(blms_din2), .d3_out(blms_din3));
//Build 16-tap block FIR filter.
BLMS_Block b1(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(blms_din0),
.xin1(blms_din1), .xin2(blms_din2), .xin3(blms_din3), .r0(r0), .r1(r1),
.r2(r2), .r3(r3), .u0(b1_u0), .u1(b1_u1), .u2(b1_u2), .u3(b1_u3),
.xout0(b1_x0_out), .xout1(b1_x1_out), .xout2(b1_x2_out), .xout3(b1_x3_out));
BLMS_Block b2(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b1_x0_out),
.xin1(b1_x1_out), .xin2(b1_x2_out), .xin3(b1_x3_out), .r0(r0), .r1(r1),
.r2(r2), .r3(r3), .u0(b2_u0), .u1(b2_u1), .u2(b2_u2), .u3(b2_u3),
.xout0(b2_x0_out), .xout1(b2_x1_out), .xout2(b2_x2_out), .xout3(b2_x3_out));
BLMS_Block b3(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b2_x0_out),
.xin1(b2_x1_out), .xin2(b2_x2_out), .xin3(b2_x3_out), .r0(r0), .r1(r1),
.r2(r2), .r3(r3), .u0(b3_u0), .u1(b3_u1), .u2(b3_u2), .u3(b3_u3),
.xout0(b3_x0_out), .xout1(b3_x1_out), .xout2(b3_x2_out), .xout3(b3_x3_out));
BLMS_Block b4(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b3_x0_out),
.xin1(b3_x1_out), .xin2(b3_x2_out), .xin3(b3_x3_out), .r0(r0), .r1(r1),
.r2(r2), .r3(r3), .u0(b4_u0), .u1(b4_u1), .u2(b4_u2), .u3(b4_u3),
.xout0(b4_x0_out), .xout1(b4_x1_out), .xout2(b4_x2_out), .xout3(b4_x3_out));
//Add outputs together.
assign y0 = b1_u0 + b2_u0 + b3_u0 + b4_u0;
assign y1 = b1_u1 + b2_u1 + b3_u1 + b4_u1;
assign y2 = b1_u2 + b2_u2 + b3_u2 + b4_u2;
assign y3 = b1_u3 + b2_u3 + b3_u3 + b4_u3;
//Instantiate ECU module.
BLMS_ECU be(.clk(clk_25MHz), .r_en(~en), .din0(dout0), .din1(dout1), .din2(dout2),
.din3(dout3), .yin0(y0), .yin1(y1), .yin2(y2), .yin3(y3), .r0(r0), .r1(r1),
.r2(r2), .r3(r3));
//Serialize the BLMS output.
Data_Mult4 dm(.clk(clk_50MHz), .en(1'b1), .d0_in(y0), .d1_in(y1), .d2_in(y2), .d3_in(y3), .dout(serial_dout));
//Take only the upper 8 bits and make it unsigned.
assign {JA[3:0], JA[7:4]} = serial_dout[15:8] + 8'd128;
//assign JA[7:0] = serial_dout[15:8] + 8'd128;
//assign {JA[3:0], JA[7:4]} = sw[7:0];
endmodule
\\
##### ToneGen.v
`timescale 1ns/1ps
module ToneGen(
input clk,
input en,
output [15:0]dout
);
//Tone generation data. At a 44KHz sampling rate, the lookup table
//generates a 440Hz and 4.4KHz tone mixed together.
reg [15:0]tonetbl[99:0];
//Pointer into the tone table.
reg [6:0]toneptr = 7'h00;
initial begin
tonetbl[0] = 2743;
tonetbl[1] = 4538;
tonetbl[2] = 4799;
tonetbl[3] = 3526;
tonetbl[4] = 1303;
tonetbl[5] = -926;
tonetbl[6] = -2214;
tonetbl[7] = -1978;
tonetbl[8] = -219;
tonetbl[9] = 2478;
tonetbl[10] = 5165;
tonetbl[11] = 6895;
tonetbl[12] = 7083;
tonetbl[13] = 5726;
tonetbl[14] = 3411;
tonetbl[15] = 1082;
tonetbl[16] = -315;
tonetbl[17] = -195;
tonetbl[18] = 1442;
tonetbl[19] = 4009;
tonetbl[20] = 6561;
tonetbl[21] = 8151;
tonetbl[22] = 8192;
tonetbl[23] = 6685;
tonetbl[24] = 4216;
tonetbl[25] = 1729;
tonetbl[26] = 173;
tonetbl[27] = 132;
tonetbl[28] = 1605;
tonetbl[29] = 4009;
tonetbl[30] = 6398;
tonetbl[31] = 7824;
tonetbl[32] = 7704;
tonetbl[33] = 6037;
tonetbl[34] = 3411;
tonetbl[35] = 770;
tonetbl[36] = -936;
tonetbl[37] = -1124;
tonetbl[38] = 209;
tonetbl[39] = 2478;
tonetbl[40] = 4737;
tonetbl[41] = 6040;
tonetbl[42] = 5804;
tonetbl[43] = 4030;
tonetbl[44] = 1303;
tonetbl[45] = -1430;
tonetbl[46] = -3219;
tonetbl[47] = -3481;
tonetbl[48] = -2213;
tonetbl[49] = 0;
tonetbl[50] = 2213;
tonetbl[51] = 3481;
tonetbl[52] = 3219;
tonetbl[53] = 1430;
tonetbl[54] = -1303;
tonetbl[55] = -4030;
tonetbl[56] = -5804;
tonetbl[57] = -6040;
tonetbl[58] = -4737;
tonetbl[59] = -2478;
tonetbl[60] = -209;
tonetbl[61] = 1124;
tonetbl[62] = 936;
tonetbl[63] = -770;
tonetbl[64] = -3411;
tonetbl[65] = -6037;
tonetbl[66] = -7704;
tonetbl[67] = -7824;
tonetbl[68] = -6398;
tonetbl[69] = -4009;
tonetbl[70] = -1605;
tonetbl[71] = -132;
tonetbl[72] = -173;
tonetbl[73] = -1729;
tonetbl[74] = -4216;
tonetbl[75] = -6685;
tonetbl[76] = -8192;
tonetbl[77] = -8151;
tonetbl[78] = -6561;
tonetbl[79] = -4009;
tonetbl[80] = -1442;
tonetbl[81] = 195;
tonetbl[82] = 315;
tonetbl[83] = -1082;
tonetbl[84] = -3411;
tonetbl[85] = -5726;
tonetbl[86] = -7083;
tonetbl[87] = -6895;
tonetbl[88] = -5165;
tonetbl[89] = -2478;
tonetbl[90] = 219;
tonetbl[91] = 1978;
tonetbl[92] = 2214;
tonetbl[93] = 926;
tonetbl[94] = -1303;
tonetbl[95] = -3526;
tonetbl[96] = -4799;
tonetbl[97] = -4538;
tonetbl[98] = -2743;
tonetbl[99] = 0;
end
//Assign the output to the value in the lookup table
//pointed to by toneptr.
assign dout = tonetbl[toneptr];
//Increment through the tone lookup table and wrap back
//to zero when at the end.
always @(posedge clk) begin
if(en) begin
if(toneptr == 7'd99) begin
toneptr <= 7'd0;
end
else begin
toneptr <= toneptr + 1'b1;
end
end
end
endmodule
\\
##### Data_Div4.v
`timescale 1ns / 1ps
module Data_Div4(
input clk,
input en,
input [15:0]din,
output reg en_out = 1'b0,
output reg [15:0]d0_out = 16'd0,
output reg [15:0]d1_out = 16'd0,
output reg [15:0]d2_out = 16'd0,
output reg [15:0]d3_out = 16'd0
);
reg [1:0]count = 2'd0;
//Internal registers for holding data.
reg [15:0]d0 = 16'd0;
reg [15:0]d1 = 16'd0;
reg [15:0]d2 = 16'd0;
always @(posedge clk) begin
if(en) begin
count <= count + 1'b1;
if(count == 2'b00) begin
d0 <= din;
en_out <= 1'b0;
end
else if(count == 2'b01) begin
d1 <= din;
en_out <= 1'b0;
end
else if(count == 2'b10) begin
d2 <= din;
en_out <= 1'b0;
end
else begin
d0_out <= d0;
d1_out <= d1;
d2_out <= d2;
d3_out <= din;
en_out <= 1'b1;
end
end
end
endmodule
\\
##### Data_Mult4.v
`timescale 1ns / 1ps
module Data_Mult4(
input clk,
input en,
input [15:0]d0_in,
input [15:0]d1_in,
input [15:0]d2_in,
input [15:0]d3_in,
output reg [15:0]dout = 16'd0
);
reg [1:0]count = 2'd0;
//Internal registers for holding data.
reg [15:0]d0 = 16'd0;
reg [15:0]d1 = 16'd0;
reg [15:0]d2 = 16'd0;
reg [15:0]d3 = 16'd0;
always @(posedge clk) begin
if(en) begin
count <= count + 1'b1;
if(count == 2'b00) begin
d0 <= d0_in;
d1 <= d1_in;
d2 <= d2_in;
d3 <= d3_in;
dout <= d3;
end
else if(count == 2'b01) begin
dout <= d0;
end
else if(count == 2'b10) begin
dout <= d1;
end
else begin
dout <= d2;
end
end
end
endmodule
\\
##### FIR_Filter.v
`timescale 1ns / 1ps
`define FILT_LENGTH 16
module FIR_Filter(
input clk,
input en,
input [15:0]din,
output [15:0]dout
);
reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients.
reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line.
wire [31:0]accum; //Accumulator for output filter calculation.
integer i; //Initialization integer.
genvar c; //Delay line generation variable.
//Calculate value in the accumulator.
assign accum = (delay_line[0] + delay_line[15]) * coeff[0] +
(delay_line[1] + delay_line[14]) * coeff[1] +
(delay_line[2] + delay_line[13]) * coeff[2] +
(delay_line[3] + delay_line[12]) * coeff[3] +
(delay_line[4] + delay_line[11]) * coeff[4] +
(delay_line[5] + delay_line[10]) * coeff[5] +
(delay_line[6] + delay_line[9]) * coeff[6] +
(delay_line[7] + delay_line[8]) * coeff[7];
//Assign upper 16-bits to output.
assign dout = accum[31:16];
initial begin
//Load the filter coefficients.
coeff[0] = 16'd2552;
coeff[1] = 16'd4557;
coeff[2] = 16'd5051;
coeff[3] = 16'd8006;
coeff[4] = 16'd9265;
coeff[5] = 16'd11427;
coeff[6] = 16'd12396;
coeff[7] = 16'd13200;
//Initialize delay line.
for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin
delay_line[i] = 16'd0;
end
end
//Advance the data through the delay line every clock cycle.
generate
for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay
always @(posedge clk) begin
if(en) delay_line[c] <= delay_line[c-1];
end
end
endgenerate
//Update with input data.
always @(posedge clk) begin
if(en) delay_line[0] <= din;
end
endmodule
\\
##### lfsr.v
`timescale 1ns / 1ps
module lfsr(
input clk,
input en,
input rst,
output [15:0]lfsr_out
);
//Create a 16-bit linear feedback shift register with
//maximal polynomial x^16 + x^14 + x^13 + x^11 + 1.
reg [15:0]lfsr = 16'd1;
wire feedback;
assign feedback = ((lfsr[15] ^ lfsr[13]) ^ lfsr[12]) ^ lfsr[10];
assign lfsr_out = lfsr;
//Update the linear shift feedback register.
always @(posedge clk) begin
if(rst) lfsr <= 16'd1;
else if(en) lfsr <= {lfsr[14:0], feedback};
end
endmodule
\\
##### BLMS_TB.v
`timescale 1ns / 1ps
module BLMS_TB;
reg clk = 1'b0;
reg [7:0]sw = 8'd0;
wire [7:0]JA;
wire clk_50MHz;
wire clk_25MHz;
wire signed [15:0]tone_and_noise;
wire signed [15:0]fout;
wire signed [15:0]dout0;
wire signed [15:0]dout1;
wire signed [15:0]dout2;
wire signed [15:0]dout3;
wire signed [15:0]blms_din0;
wire signed [15:0]blms_din1;
wire signed [15:0]blms_din2;
wire signed [15:0]blms_din3;
wire en;
BLMS_Top uut(.clk(clk), .sw(sw), .JA(JA));
assign clk_50MHz = uut.clk_50MHz;
assign clk_25MHz = uut.clk_25MHz;
assign tone_and_noise = uut.tone_and_noise;
assign fout = uut.fout;
assign dout0 = uut.dout0;
assign dout1 = uut.dout1;
assign dout2 = uut.dout2;
assign dout3 = uut.dout3;
assign blms_din0 = uut.blms_din0;
assign blms_din1 = uut.blms_din1;
assign blms_din2 = uut.blms_din2;
assign blms_din3 = uut.blms_din3;
assign en = uut.en;
//Generate 100MHz clock.
always #5 clk = ~clk;
initial begin
#500000 sw = 8'd1;
end
endmodule
\\