### 用FPGA实现各种数字滤波器 \\ #### FPGA滤波器实施概述 本篇部分内容来自网站[[https://www.nicholasmikstas.com/fpga-filter-implementation|FPGA滤波器实现]]的一些项目,源于一位在校学生的学习和设计- 了解并在FPGA上实现几种类型的数字滤波器器,设计的所有滤波器均为15阶滤波器,并使用16位定点数学运算,该学生有一篇PPT可供参考:\\ [[https://www.eetree.cn/wiki/_media/filter_implementation_on_a_fpga_board_xueyan_lu_06152017.pdf|FPGA滤波器实现]]\\ 研究项目期间创建的Verilog源文件如下。\\ \\ ### FIR滤波器 FIR滤波器是四个滤波器中最简单、最快的,它利用了预加器的对称性,而且使用加法器树来最小化组合路径延迟。\\ {{ ::fir_filter.png |}} ##### FIR_Filter.v `define FILT_LENGTH 16 module FIR_Filter( input clk, input en, input [15:0]din, output [15:0]dout ); reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients. reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line. wire [31:0]accum; //Accumulator for output filter calculation. integer i; //Initialization integer. genvar c; //Delay line generation variable. reg signed [16:0]preadd_regs[7:0]; //Save calc after preadd. reg signed [31:0]mult_regs[7:0]; //Save calc after multiplication. reg signed [31:0]tree1_regs[3:0]; //Save calc after first layer of adder tree. reg signed [31:0]tree2_regs[1:0]; //Save calc after first layer of adder tree. reg signed [31:0]treeout_reg; //Save calc after complete. //assign dout = treeout_reg[31:16]; //Calculate value in the accumulator. assign accum = (delay_line[0] + delay_line[15]) * coeff[0] + (delay_line[1] + delay_line[14]) * coeff[1] + (delay_line[2] + delay_line[13]) * coeff[2] + (delay_line[3] + delay_line[12]) * coeff[3] + (delay_line[4] + delay_line[11]) * coeff[4] + (delay_line[5] + delay_line[10]) * coeff[5] + (delay_line[6] + delay_line[9]) * coeff[6] + (delay_line[7] + delay_line[8]) * coeff[7]; //Assign upper 16-bits to output. assign dout = accum[31:16]; initial begin //Load the filter coefficients. coeff[0] = 16'd2320; coeff[1] = 16'd4143; coeff[2] = 16'd4592; coeff[3] = 16'd7278; coeff[4] = 16'd8423; coeff[5] = 16'd10389; coeff[6] = 16'd11269; coeff[7] = 16'd12000; //Initialize delay line. for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin delay_line[i] = 16'd0; end //Initialize the preadder regs. for(i = 0; i < 8; i = i+1'b1) begin preadd_regs[i] = 17'd0; end //Initialize the multiplier regs. for(i = 0; i < 8; i = i+1'b1) begin mult_regs[i] = 32'd0; end //Initialize the first layer of the adder tree regs. for(i = 0; i < 4; i = i+1'b1) begin tree1_regs[i] = 32'd0; end //Initialize the second layer of the adder tree regs. for(i = 0; i < 2; i = i+1'b1) begin tree2_regs[i] = 32'd0; end //Initialize the adder tree output reg. treeout_reg = 32'd0; end //Advance the data through the delay line every clock cycle. generate for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay always @(posedge clk) begin if(en) delay_line[c] <= delay_line[c-1]; end end endgenerate //Update with input data. always @(posedge clk) begin if(en) delay_line[0] <= din; end endmodule \\ ##### filter_top.v module filter_top( input clk, input [7:0]sw, output [7:0]JA ); wire [15:0]tout; //The output of the tone lookup table. wire [15:0]fout; //The output of the FIR filter. wire [15:0]mout; //Selected output. wire en; //Clock enble. wire clk_out; //264MHz System clock. assign en = 1'b1; clk_wiz_0 cw (.clk_in1(clk), .clk_out1(clk_out)); //clk_en ce(.clk(clk_out), .en(en)); ToneGen tg(.clk(clk_out), .en(en), .dout(tout)); FIR_Filter ff(.clk(clk_out), .en(en), .din(tout), .dout(fout)); //Choose filtered or unfiltered output based on sw0. assign mout = sw[0] ? fout : tout; //Take only the upper 8 bits and make it unsigned. //assign JA = mout[15:8] + 8'd128; assign {JA[3:0], JA[7:4]} = mout[15:8] + 8'd128; endmodule \\ ##### ToneGen.v `timescale 1ns/1ps module ToneGen( input clk, input en, output [15:0]dout ); //Tone generation data. At a 44KHz sampling rate, the lookup table //generates a 440Hz and 4.4KHz tone mixed together. reg [15:0]tonetbl[99:0]; //Pointer into the tone table. reg [6:0]toneptr = 7'h00; initial begin tonetbl[0] = 10970; tonetbl[1] = 18151; tonetbl[2] = 19197; tonetbl[3] = 14105; tonetbl[4] = 5211; tonetbl[5] = -3704; tonetbl[6] = -8858; tonetbl[7] = -7914; tonetbl[8] = -876; tonetbl[9] = 9912; tonetbl[10] = 20660; tonetbl[11] = 27581; tonetbl[12] = 28330; tonetbl[13] = 22905; tonetbl[14] = 13642; tonetbl[15] = 4326; tonetbl[16] = -1260; tonetbl[17] = -780; tonetbl[18] = 5767; tonetbl[19] = 16037; tonetbl[20] = 26244; tonetbl[21] = 32601; tonetbl[22] = 32767; tonetbl[23] = 26741; tonetbl[24] = 16863; tonetbl[25] = 6918; tonetbl[26] = 692; tonetbl[27] = 527; tonetbl[28] = 6421; tonetbl[29] = 16037; tonetbl[30] = 25590; tonetbl[31] = 31295; tonetbl[32] = 30814; tonetbl[33] = 24149; tonetbl[34] = 13642; tonetbl[35] = 3081; tonetbl[36] = -3745; tonetbl[37] = -4494; tonetbl[38] = 837; tonetbl[39] = 9912; tonetbl[40] = 18947; tonetbl[41] = 24161; tonetbl[42] = 23217; tonetbl[43] = 16119; tonetbl[44] = 5211; tonetbl[45] = -5718; tonetbl[46] = -12878; tonetbl[47] = -13924; tonetbl[48] = -8853; tonetbl[49] = 0; tonetbl[50] = 8853; tonetbl[51] = 13924; tonetbl[52] = 12878; tonetbl[53] = 5718; tonetbl[54] = -5211; tonetbl[55] = -16119; tonetbl[56] = -23217; tonetbl[57] = -24161; tonetbl[58] = -18947; tonetbl[59] = -9912; tonetbl[60] = -837; tonetbl[61] = 4494; tonetbl[62] = 3745; tonetbl[63] = -3081; tonetbl[64] = -13642; tonetbl[65] = -24149; tonetbl[66] = -30814; tonetbl[67] = -31295; tonetbl[68] = -25590; tonetbl[69] = -16037; tonetbl[70] = -6421; tonetbl[71] = -527; tonetbl[72] = -692; tonetbl[73] = -6918; tonetbl[74] = -16863; tonetbl[75] = -26741; tonetbl[76] = -32767; tonetbl[77] = -32601; tonetbl[78] = -26244; tonetbl[79] = -16037; tonetbl[80] = -5767; tonetbl[81] = 780; tonetbl[82] = 1260; tonetbl[83] = -4326; tonetbl[84] = -13642; tonetbl[85] = -22905; tonetbl[86] = -28330; tonetbl[87] = -27581; tonetbl[88] = -20660; tonetbl[89] = -9912; tonetbl[90] = 876; tonetbl[91] = 7914; tonetbl[92] = 8858; tonetbl[93] = 3704; tonetbl[94] = -5211; tonetbl[95] = -14105; tonetbl[96] = -19197; tonetbl[97] = -18151; tonetbl[98] = -10970; tonetbl[99] = 0; end //Assign the output to the value in the lookup table //pointed to by toneptr. assign dout = tonetbl[toneptr]; //Increment through the tone lookup table and wrap back //to zero when at the end. always @(posedge clk) begin if(en) begin if(toneptr == 7'd99) begin toneptr <= 7'd0; end else begin toneptr <= toneptr + 1'b1; end end end endmodule \\ ##### clk_en.v module clk_en( input clk, output reg en = 1'b0 ); reg [15:0]en_counter = 16'h0; always @(posedge clk) begin if(en_counter == 16'd5999) begin en_counter <= 16'h0; en <= 1'b1; end else begin en_counter <= en_counter + 1'b1; en <= 1'b0; end end endmodule \\ ##### TB_ToneGen.v module TB_ToneGen; reg clk = 1'b0; reg sw0 = 1'b1; wire [7:0]JA; wire en; //wire [15:0]cout; filter_top uut(.clk(clk), .sw({15'h00,sw0}), .JA({JA[3:0], JA[7:4]})); assign en = uut.en; //assign cout = uut.ce.en_counter; //initial begin // #600000 sw0 = 1'b1; //end //100MHz clock always #5 clk = ~clk; endmodule \\ \\ #### LMS自适应滤波器 LMS自适应滤波器在单个时钟周期内完成其输出计算和权重更新。由于其单周期运行,因此存在大量的组合延迟。该滤波器只能以FIR滤波器速度的一小部分运行。\\ {{ ::lms_adaptive_filter.png |}} ##### LMS_Adapt.v `define ADAPT_FILT_LENGTH 16 module LMS_Adapt( input clk, input en, input [15:0]din, input signed [15:0]desired, output signed [15:0]dout, output signed [15:0]err ); parameter MU = 16'd32767; reg signed [15:0]mu = MU; reg signed [15:0]coeff[`ADAPT_FILT_LENGTH-1:0]; //Filter coefficients. reg signed [15:0]delay_line[`ADAPT_FILT_LENGTH-1:0]; //Input delay line. wire signed [31:0]accum; //Accumulator for output filter calculation. wire signed [31:0]stepped; //Error after step sized applied. integer i; //Initialization integer. genvar c; //Delay line generation variable. //Calculate the error and multiply it by the step size. assign err = desired - dout; //assign stepped = err * mu; assign stepped = err << 15; //Calculate value in the accumulator. assign accum = delay_line[0]*coeff[0] + delay_line[1]*coeff[1] + delay_line[2]*coeff[2] + delay_line[3]*coeff[3] + delay_line[4]*coeff[4] + delay_line[5]*coeff[5] + delay_line[6]*coeff[6] + delay_line[7]*coeff[7] + delay_line[8]*coeff[8] + delay_line[9]*coeff[9] + delay_line[10]*coeff[10] + delay_line[11]*coeff[11] + delay_line[12]*coeff[12] + delay_line[13]*coeff[13] + delay_line[14]*coeff[14] + delay_line[15]*coeff[15]; //Assign upper 16-bits to output. assign dout = accum[31:16]; initial begin //Load the filter coefficients. coeff[0] = 20'd0; coeff[1] = 20'd0; coeff[2] = 20'd0; coeff[3] = 20'd0; coeff[4] = 20'd0; coeff[5] = 20'd0; coeff[6] = 20'd0; coeff[7] = 20'd0; coeff[8] = 20'd0; coeff[9] = 20'd0; coeff[10] = 20'd0; coeff[11] = 20'd0; coeff[12] = 20'd0; coeff[13] = 20'd0; coeff[14] = 20'd0; coeff[15] = 20'd0; //Initialize delay line. for(i = 0; i < `ADAPT_FILT_LENGTH; i = i+1'b1) begin delay_line[i] = 16'd0; end end //Advance the data through the delay line every clock cycle. generate for (c = `ADAPT_FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay always @(posedge clk) begin if(en) delay_line[c] <= delay_line[c-1]; end end endgenerate //Update with input data. always @(posedge clk) begin if(en) delay_line[0] <= din; end wire signed [31:0]num2[`ADAPT_FILT_LENGTH-1:0]; wire signed [15:0]n1[`ADAPT_FILT_LENGTH-1:0]; wire signed [15:0]n2[`ADAPT_FILT_LENGTH-1:0]; //Update the coefficients with the LMS algorithm. generate for (c = `ADAPT_FILT_LENGTH; c > 0; c = c - 1) begin: adapt_update assign n1[c-1] = stepped[31:16]; assign num2[c-1] = n1[c-1]*delay_line[c-1]; assign n2[c-1] = num2[c-1][31:16]; always @(posedge clk) begin if(en) coeff[c-1] <= coeff[c-1] + n2[c-1]; end end endgenerate endmodule \\ ##### filter_top.v module filter_top( input clk, input [7:0]sw, output [7:0]JA ); wire signed [15:0]tout; //Output of the tone lookup table. wire [15:0]fout; //Output of the FIR filter. wire [15:0]aout; //Output of the adaptive filter. wire [15:0]err; //Adaptive filter error. wire [15:0]lfsr_out; //16-bit Random noise variable. wire en; //Clock enble. wire [9:0]rnd; //10-bit noise. wire signed [15:0]tone_and_noise; //Combination of tone and noise. wire signed [15:0]delay_out; //Output of the delay line. wire [15:0]mout; //Selected desired output. wire clk19_8MHz; //19.8MHz system clock. assign rnd = lfsr_out[15:6]; assign tone_and_noise = tout + rnd; //assign en = 1'b1; clk_wiz_0 cw(.clk_in1(clk), .clk_out1(clk19_8MHz), .reset(1'b0)); ToneGen tg(.clk(clk19_8MHz), .en(en), .dout(tout)); FIR_Filter ff(.clk(clk19_8MHz), .en(en), .din(tone_and_noise), .dout(fout)); LMS_Adapt af(.clk(clk19_8MHz), .en(en), .din(tone_and_noise), .desired(mout), .dout(aout), .err(err)); lfsr sr(.clk(clk19_8MHz), .en(en), .lfsr_out(lfsr_out)); clk_en ce(.clk(clk19_8MHz), .en(en)); //Choose filtered or unfiltered output based on sw0. assign mout = sw[0] ? fout : tone_and_noise;//delay_out; //Take only the upper 8 bits and make it unsigned. assign {JA[3:0], JA[7:4]} = aout[15:8] + 8'd128; //assign JA[7:0] = aout[15:8] + 8'd128; //assign {JA[3:0], JA[7:4]} = sw[7:0]; endmodule \\ ##### ToneGen.v `timescale 1ns/1ps module ToneGen( input clk, input en, output [15:0]dout ); //Tone generation data. At a 44KHz sampling rate, the lookup table //generates a 440Hz and 4.4KHz tone mixed together. reg [15:0]tonetbl[99:0]; //Pointer into the tone table. reg [6:0]toneptr = 7'h00; initial begin tonetbl[0] = 10970; tonetbl[1] = 18151; tonetbl[2] = 19197; tonetbl[3] = 14105; tonetbl[4] = 5211; tonetbl[5] = -3704; tonetbl[6] = -8858; tonetbl[7] = -7914; tonetbl[8] = -876; tonetbl[9] = 9912; tonetbl[10] = 20660; tonetbl[11] = 27581; tonetbl[12] = 28330; tonetbl[13] = 22905; tonetbl[14] = 13642; tonetbl[15] = 4326; tonetbl[16] = -1260; tonetbl[17] = -780; tonetbl[18] = 5767; tonetbl[19] = 16037; tonetbl[20] = 26244; tonetbl[21] = 32601; tonetbl[22] = 32767; tonetbl[23] = 26741; tonetbl[24] = 16863; tonetbl[25] = 6918; tonetbl[26] = 692; tonetbl[27] = 527; tonetbl[28] = 6421; tonetbl[29] = 16037; tonetbl[30] = 25590; tonetbl[31] = 31295; tonetbl[32] = 30814; tonetbl[33] = 24149; tonetbl[34] = 13642; tonetbl[35] = 3081; tonetbl[36] = -3745; tonetbl[37] = -4494; tonetbl[38] = 837; tonetbl[39] = 9912; tonetbl[40] = 18947; tonetbl[41] = 24161; tonetbl[42] = 23217; tonetbl[43] = 16119; tonetbl[44] = 5211; tonetbl[45] = -5718; tonetbl[46] = -12878; tonetbl[47] = -13924; tonetbl[48] = -8853; tonetbl[49] = 0; tonetbl[50] = 8853; tonetbl[51] = 13924; tonetbl[52] = 12878; tonetbl[53] = 5718; tonetbl[54] = -5211; tonetbl[55] = -16119; tonetbl[56] = -23217; tonetbl[57] = -24161; tonetbl[58] = -18947; tonetbl[59] = -9912; tonetbl[60] = -837; tonetbl[61] = 4494; tonetbl[62] = 3745; tonetbl[63] = -3081; tonetbl[64] = -13642; tonetbl[65] = -24149; tonetbl[66] = -30814; tonetbl[67] = -31295; tonetbl[68] = -25590; tonetbl[69] = -16037; tonetbl[70] = -6421; tonetbl[71] = -527; tonetbl[72] = -692; tonetbl[73] = -6918; tonetbl[74] = -16863; tonetbl[75] = -26741; tonetbl[76] = -32767; tonetbl[77] = -32601; tonetbl[78] = -26244; tonetbl[79] = -16037; tonetbl[80] = -5767; tonetbl[81] = 780; tonetbl[82] = 1260; tonetbl[83] = -4326; tonetbl[84] = -13642; tonetbl[85] = -22905; tonetbl[86] = -28330; tonetbl[87] = -27581; tonetbl[88] = -20660; tonetbl[89] = -9912; tonetbl[90] = 876; tonetbl[91] = 7914; tonetbl[92] = 8858; tonetbl[93] = 3704; tonetbl[94] = -5211; tonetbl[95] = -14105; tonetbl[96] = -19197; tonetbl[97] = -18151; tonetbl[98] = -10970; tonetbl[99] = 0; end //Assign the output to the value in the lookup table //pointed to by toneptr. assign dout = tonetbl[toneptr]; //Increment through the tone lookup table and wrap back //to zero when at the end. always @(posedge clk) begin if(en) begin if(toneptr == 7'd99) begin toneptr <= 7'd0; end else begin toneptr <= toneptr + 1'b1; end end end endmodule \\ ##### FIR_Filter.v `define FILT_LENGTH 16 module FIR_Filter( input clk, input en, input [15:0]din, output [15:0]dout ); reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients. reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line. wire [31:0]accum; //Accumulator for output filter calculation. integer i; //Initialization integer. genvar c; //Delay line generation variable. //Calculate value in the accumulator. assign accum = (delay_line[0] + delay_line[15]) * coeff[0] + (delay_line[1] + delay_line[14]) * coeff[1] + (delay_line[2] + delay_line[13]) * coeff[2] + (delay_line[3] + delay_line[12]) * coeff[3] + (delay_line[4] + delay_line[11]) * coeff[4] + (delay_line[5] + delay_line[10]) * coeff[5] + (delay_line[6] + delay_line[9]) * coeff[6] + (delay_line[7] + delay_line[8]) * coeff[7]; //Assign upper 16-bits to output. assign dout = accum[31:16]; initial begin //Load the filter coefficients. coeff[0] = 16'd2552; coeff[1] = 16'd4557; coeff[2] = 16'd5051; coeff[3] = 16'd8006; coeff[4] = 16'd9265; coeff[5] = 16'd11427; coeff[6] = 16'd12396; coeff[7] = 16'd13200; //Initialize delay line. for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin delay_line[i] = 16'd0; end end //Advance the data through the delay line every clock cycle. generate for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay always @(posedge clk) begin if(en) delay_line[c] <= delay_line[c-1]; end end endgenerate //Update with input data. always @(posedge clk) begin if(en) delay_line[0] <= din; end endmodule \\ ##### clk_en.v module clk_en( input clk, output reg en = 1'b0 ); reg [15:0]en_counter = 16'h0; always @(posedge clk) begin if(en_counter == 16'd449) begin en_counter <= 16'h0; en <= 1'b1; end else begin en_counter <= en_counter + 1'b1; en <= 1'b0; end end endmodule \\ ##### lfsr.v `timescale 1ns / 1ps module lfsr( input clk, input en, input rst, output [15:0]lfsr_out ); //Create a 16-bit linear feedback shift register with //maximal polynomial x^16 + x^14 + x^13 + x^11 + 1. reg [15:0]lfsr = 16'd1; wire feedback; assign feedback = ((lfsr[15] ^ lfsr[13]) ^ lfsr[12]) ^ lfsr[10]; assign lfsr_out = lfsr; //Update the linear feedback shift register. always @(posedge clk) begin if(rst) lfsr <= 16'd1; else if(en) lfsr <= {lfsr[14:0], feedback}; end endmodule \\ ##### TB_LMS_Adapt.v module TB_LMS_Adapt; reg clk = 1'b0; reg [7:0]sw = 1'b1; wire [7:0]JA; wire [15:0]d; wire [15:0]y; wire [15:0]e; wire [15:0]n1; filter_top uut(.clk(clk), .sw(sw), .JA(JA)); assign d = uut.fout; assign y = uut.aout; assign e = uut.err; assign n1 = uut.af.n1[0]; always #5 clk = ~clk; initial begin //#20000000 sw[0] = 1'b1; //#40000 sw[0] = 1'b1; end endmodule \\ ### 块FIR滤波器 块FIR滤波器的创建是对块概念的初步测试,因为其计算块比LMS滤波器计算块简单得多。滤波器的核心由四个计算模块组成,每个时钟周期对四个数据样本进行操作。\\ {{ ::block_fir_filter.png |}} ##### Block_FIR.v `timescale 1ns / 1ps module Block_FIR( input clk, input en, input signed [15:0]x0_in, input signed [15:0]x1_in, input signed [15:0]x2_in, input signed [15:0]x3_in, output reg signed [15:0]x0_out = 16'd0, output reg signed [15:0]x1_out = 16'd0, output reg signed [15:0]x2_out = 16'd0, output reg signed [15:0]x3_out = 16'd0, output signed [15:0]u0, output signed [15:0]u1, output signed [15:0]u2, output signed [15:0]u3 ); //Filter coefficients. parameter b0 = 16'd1; parameter b1 = 16'd1; parameter b2 = 16'd1; parameter b3 = 16'd1; //Coefficient registers. reg signed [15:0]_b0 = b0; reg signed [15:0]_b1 = b1; reg signed [15:0]_b2 = b2; reg signed [15:0]_b3 = b3; //Register unit. always @(posedge clk) begin if(en) begin x0_out <= x0_in; x1_out <= x1_in; x2_out <= x2_in; x3_out <= x3_in; end end /******************************IPC1******************************/ //Multiplier outputs. wire signed [31:0]IPC1_mult0; wire signed [31:0]IPC1_mult1; wire signed [31:0]IPC1_mult2; wire signed [31:0]IPC1_mult3; //Adder outputs. wire signed [31:0]IPC1_add0; wire signed [31:0]IPC1_add1; wire signed [31:0]IPC1_out; //Multiply inputs with coefficients. assign IPC1_mult0 = x3_in * _b0; assign IPC1_mult1 = x2_in * _b1; assign IPC1_mult2 = x1_in * _b2; assign IPC1_mult3 = x0_in * _b3; //Add multiplied values together. assign IPC1_add0 = IPC1_mult0 + IPC1_mult1; assign IPC1_add1 = IPC1_mult2 + IPC1_mult3; assign IPC1_out = IPC1_add0 + IPC1_add1; //Assign output. assign u3 = IPC1_out[31:16]; /******************************IPC2******************************/ //Multiplier outputs. wire signed [31:0]IPC2_mult0; wire signed [31:0]IPC2_mult1; wire signed [31:0]IPC2_mult2; wire signed [31:0]IPC2_mult3; //Adder outputs. wire signed [31:0]IPC2_add0; wire signed [31:0]IPC2_add1; wire signed [31:0]IPC2_out; //Multiply inputs with coefficients. assign IPC2_mult0 = x2_in * _b0; assign IPC2_mult1 = x1_in * _b1; assign IPC2_mult2 = x0_in * _b2; assign IPC2_mult3 = x3_out * _b3; //Add multiplied values together. assign IPC2_add0 = IPC2_mult0 + IPC2_mult1; assign IPC2_add1 = IPC2_mult2 + IPC2_mult3; assign IPC2_out = IPC2_add0 + IPC2_add1; //Assign output. assign u2 = IPC2_out[31:16]; /******************************IPC3******************************/ //Multiplier outputs. wire signed [31:0]IPC3_mult0; wire signed [31:0]IPC3_mult1; wire signed [31:0]IPC3_mult2; wire signed [31:0]IPC3_mult3; //Adder outputs. wire signed [31:0]IPC3_add0; wire signed [31:0]IPC3_add1; wire signed [31:0]IPC3_out; //Multiply inputs with coefficients. assign IPC3_mult0 = x1_in * _b0; assign IPC3_mult1 = x0_in * _b1; assign IPC3_mult2 = x3_out * _b2; assign IPC3_mult3 = x2_out * _b3; //Add multiplied values together. assign IPC3_add0 = IPC3_mult0 + IPC3_mult1; assign IPC3_add1 = IPC3_mult2 + IPC3_mult3; assign IPC3_out = IPC3_add0 + IPC3_add1; //Assign output. assign u1 = IPC3_out[31:16]; /******************************IPC4******************************/ //Multiplier outputs. wire signed [31:0]IPC4_mult0; wire signed [31:0]IPC4_mult1; wire signed [31:0]IPC4_mult2; wire signed [31:0]IPC4_mult3; //Adder outputs. wire signed [31:0]IPC4_add0; wire signed [31:0]IPC4_add1; wire signed [31:0]IPC4_out; //Multiply inputs with coefficients. assign IPC4_mult0 = x0_in * _b0; assign IPC4_mult1 = x3_out * _b1; assign IPC4_mult2 = x2_out * _b2; assign IPC4_mult3 = x1_out * _b3; //Add multiplied values together. assign IPC4_add0 = IPC4_mult0 + IPC4_mult1; assign IPC4_add1 = IPC4_mult2 + IPC4_mult3; assign IPC4_out = IPC4_add0 + IPC4_add1; //Assign output. assign u0 = IPC4_out[31:16]; endmodule \\ ##### Block_FIR_Top.v `timescale 1ns / 1ps module Block_FIR_Top( input clk, input [7:0]sw, output [7:0]JA ); wire clk_100MHz; wire clk_25MHz; wire en; wire signed [15:0]tonegen_out; //Data divider outputs. wire en_out; wire signed [15:0]d0_out; wire signed [15:0]d1_out; wire signed [15:0]d2_out; wire signed [15:0]d3_out; //FIR f1 outputs wire signed [15:0]f1_x0_out; wire signed [15:0]f1_x1_out; wire signed [15:0]f1_x2_out; wire signed [15:0]f1_x3_out; wire signed [15:0]f1_u0; wire signed [15:0]f1_u1; wire signed [15:0]f1_u2; wire signed [15:0]f1_u3; //FIR f2 outputs wire signed [15:0]f2_x0_out; wire signed [15:0]f2_x1_out; wire signed [15:0]f2_x2_out; wire signed [15:0]f2_x3_out; wire signed [15:0]f2_u0; wire signed [15:0]f2_u1; wire signed [15:0]f2_u2; wire signed [15:0]f2_u3; //FIR f3 outputs wire signed [15:0]f3_x0_out; wire signed [15:0]f3_x1_out; wire signed [15:0]f3_x2_out; wire signed [15:0]f3_x3_out; wire signed [15:0]f3_u0; wire signed [15:0]f3_u1; wire signed [15:0]f3_u2; wire signed [15:0]f3_u3; //FIR f4 outputs wire signed [15:0]f4_x0_out; wire signed [15:0]f4_x1_out; wire signed [15:0]f4_x2_out; wire signed [15:0]f4_x3_out; wire signed [15:0]f4_u0; wire signed [15:0]f4_u1; wire signed [15:0]f4_u2; wire signed [15:0]f4_u3; //Block filter outputs. wire signed [15:0]y0; wire signed [15:0]y1; wire signed [15:0]y2; wire signed [15:0]y3; wire [15:0]serial_dout; //Serialized output. wire [15:0]mout; //Selected output. assign en = 1'b1; clk_wiz_0 cw(.clk_in1(clk), .clk_out1(clk_100MHz), .clk_out2(clk_25MHz)); ToneGen tg(.clk(clk_100MHz), .en(en), .dout(tonegen_out)); Data_Div4 dd(.clk(clk_100MHz), .en(en), .din(tonegen_out), .en_out(en_out), .d0_out(d0_out), .d1_out(d1_out), .d2_out(d2_out), .d3_out(d3_out)); //Build 16-tap block FIR filter. Block_FIR #(.b0(16'd2320), .b1(16'd4143), .b2(16'd4592), .b3(16'd7278))f1(.clk(clk_25MHz), .en(en), .x0_in(d0_out), .x1_in(d1_out), .x2_in(d2_out), .x3_in(d3_out), .x0_out(f1_x0_out), .x1_out(f1_x1_out), .x2_out(f1_x2_out), .x3_out(f1_x3_out), .u0(f1_u0), .u1(f1_u1), .u2(f1_u2), .u3(f1_u3)); Block_FIR #(.b0(16'd8423), .b1(16'd10389), .b2(16'd11269), .b3(16'd12000))f2(.clk(clk_25MHz), .en(en), .x0_in(f1_x0_out), .x1_in(f1_x1_out), .x2_in(f1_x2_out), .x3_in(f1_x3_out), .x0_out(f2_x0_out), .x1_out(f2_x1_out), .x2_out(f2_x2_out), .x3_out(f2_x3_out), .u0(f2_u0), .u1(f2_u1), .u2(f2_u2), .u3(f2_u3)); Block_FIR #(.b0(16'd12000), .b1(16'd11269), .b2(16'd10389), .b3(16'd8423))f3(.clk(clk_25MHz), .en(en), .x0_in(f2_x0_out), .x1_in(f2_x1_out), .x2_in(f2_x2_out), .x3_in(f2_x3_out), .x0_out(f3_x0_out), .x1_out(f3_x1_out), .x2_out(f3_x2_out), .x3_out(f3_x3_out), .u0(f3_u0), .u1(f3_u1), .u2(f3_u2), .u3(f3_u3)); Block_FIR #(.b0(16'd7278), .b1(16'd4592), .b2(16'd4143), .b3(16'd2320))f4(.clk(clk_25MHz), .en(en), .x0_in(f3_x0_out), .x1_in(f3_x1_out), .x2_in(f3_x2_out), .x3_in(f3_x3_out), .x0_out(f4_x0_out), .x1_out(f4_x1_out), .x2_out(f4_x2_out), .x3_out(f4_x3_out), .u0(f4_u0), .u1(f4_u1), .u2(f4_u2), .u3(f4_u3)); //Add outputs together. assign y0 = f1_u0 + f2_u0 + f3_u0 + f4_u0; assign y1 = f1_u1 + f2_u1 + f3_u1 + f4_u1; assign y2 = f1_u2 + f2_u2 + f3_u2 + f4_u2; assign y3 = f1_u3 + f2_u3 + f3_u3 + f4_u3; //Serialize the output data. Data_Mult4 dm(.clk(clk_100MHz), .en(en), .d0_in(y0), .d1_in(y1), .d2_in(y2), .d3_in(y3), .dout(serial_dout)); //Choose filtered or unfiltered output based on sw0. assign mout = sw[0] ? serial_dout : tonegen_out; //Take only the upper 8 bits and make it unsigned. //assign JA = mout[15:8] + 8'd128; assign {JA[3:0], JA[7:4]} = mout[15:8] + 8'd128; endmodule \\ ##### ToneGen.v `timescale 1ns/1ps module ToneGen( input clk, input en, output [15:0]dout ); //Tone generation data. At a 44KHz sampling rate, the lookup table //generates a 440Hz and 4.4KHz tone mixed together. reg [15:0]tonetbl[99:0]; //Pointer into the tone table. reg [6:0]toneptr = 7'h00; initial begin tonetbl[0] = 10970; tonetbl[1] = 18151; tonetbl[2] = 19197; tonetbl[3] = 14105; tonetbl[4] = 5211; tonetbl[5] = -3704; tonetbl[6] = -8858; tonetbl[7] = -7914; tonetbl[8] = -876; tonetbl[9] = 9912; tonetbl[10] = 20660; tonetbl[11] = 27581; tonetbl[12] = 28330; tonetbl[13] = 22905; tonetbl[14] = 13642; tonetbl[15] = 4326; tonetbl[16] = -1260; tonetbl[17] = -780; tonetbl[18] = 5767; tonetbl[19] = 16037; tonetbl[20] = 26244; tonetbl[21] = 32601; tonetbl[22] = 32767; tonetbl[23] = 26741; tonetbl[24] = 16863; tonetbl[25] = 6918; tonetbl[26] = 692; tonetbl[27] = 527; tonetbl[28] = 6421; tonetbl[29] = 16037; tonetbl[30] = 25590; tonetbl[31] = 31295; tonetbl[32] = 30814; tonetbl[33] = 24149; tonetbl[34] = 13642; tonetbl[35] = 3081; tonetbl[36] = -3745; tonetbl[37] = -4494; tonetbl[38] = 837; tonetbl[39] = 9912; tonetbl[40] = 18947; tonetbl[41] = 24161; tonetbl[42] = 23217; tonetbl[43] = 16119; tonetbl[44] = 5211; tonetbl[45] = -5718; tonetbl[46] = -12878; tonetbl[47] = -13924; tonetbl[48] = -8853; tonetbl[49] = 0; tonetbl[50] = 8853; tonetbl[51] = 13924; tonetbl[52] = 12878; tonetbl[53] = 5718; tonetbl[54] = -5211; tonetbl[55] = -16119; tonetbl[56] = -23217; tonetbl[57] = -24161; tonetbl[58] = -18947; tonetbl[59] = -9912; tonetbl[60] = -837; tonetbl[61] = 4494; tonetbl[62] = 3745; tonetbl[63] = -3081; tonetbl[64] = -13642; tonetbl[65] = -24149; tonetbl[66] = -30814; tonetbl[67] = -31295; tonetbl[68] = -25590; tonetbl[69] = -16037; tonetbl[70] = -6421; tonetbl[71] = -527; tonetbl[72] = -692; tonetbl[73] = -6918; tonetbl[74] = -16863; tonetbl[75] = -26741; tonetbl[76] = -32767; tonetbl[77] = -32601; tonetbl[78] = -26244; tonetbl[79] = -16037; tonetbl[80] = -5767; tonetbl[81] = 780; tonetbl[82] = 1260; tonetbl[83] = -4326; tonetbl[84] = -13642; tonetbl[85] = -22905; tonetbl[86] = -28330; tonetbl[87] = -27581; tonetbl[88] = -20660; tonetbl[89] = -9912; tonetbl[90] = 876; tonetbl[91] = 7914; tonetbl[92] = 8858; tonetbl[93] = 3704; tonetbl[94] = -5211; tonetbl[95] = -14105; tonetbl[96] = -19197; tonetbl[97] = -18151; tonetbl[98] = -10970; tonetbl[99] = 0; end //Assign the output to the value in the lookup table //pointed to by toneptr. assign dout = tonetbl[toneptr]; //Increment through the tone lookup table and wrap back //to zero when at the end. always @(posedge clk) begin if(en) begin if(toneptr == 7'd99) begin toneptr <= 7'd0; end else begin toneptr <= toneptr + 1'b1; end end end endmodule \\ ##### Data_Div4.v `timescale 1ns / 1ps module Data_Div4( input clk, input en, input [15:0]din, output reg en_out = 1'b0, output reg [15:0]d0_out = 16'd0, output reg [15:0]d1_out = 16'd0, output reg [15:0]d2_out = 16'd0, output reg [15:0]d3_out = 16'd0 ); reg [1:0]count = 2'd0; //Internal registers for holding data. reg [15:0]d0 = 16'd0; reg [15:0]d1 = 16'd0; reg [15:0]d2 = 16'd0; always @(posedge clk) begin if(en) begin count <= count + 1'b1; if(count == 2'b00) begin d0 <= din; en_out <= 1'b0; end else if(count == 2'b01) begin d1 <= din; en_out <= 1'b0; end else if(count == 2'b10) begin d2 <= din; en_out <= 1'b0; end else begin d0_out <= d0; d1_out <= d1; d2_out <= d2; d3_out <= din; en_out <= 1'b1; end end end endmodule \\ ##### Data_Mult4.v `timescale 1ns / 1ps module Data_Mult4( input clk, input en, input [15:0]d0_in, input [15:0]d1_in, input [15:0]d2_in, input [15:0]d3_in, output reg [15:0]dout = 16'd0 ); reg [1:0]count = 2'd0; //Internal registers for holding data. reg [15:0]d0 = 16'd0; reg [15:0]d1 = 16'd0; reg [15:0]d2 = 16'd0; reg [15:0]d3 = 16'd0; always @(posedge clk) begin if(en) begin count <= count + 1'b1; if(count == 2'b00) begin dout <= d0; end else if(count == 2'b01) begin dout <= d1; end else if(count == 2'b10) begin dout <= d2; end else begin d0 <= d0_in; d1 <= d1_in; d2 <= d2_in; d3 <= d3_in; dout <= d3; end end end endmodule \\ ##### Block_FIR_TB.v `timescale 1ns / 1ps module Block_FIR_TB; reg clk = 1'b0; reg [7:0]sw = 8'd0; wire [7:0]JA; Block_FIR_Top uut(.clk(clk), .sw(sw), .JA(JA)); initial begin #50000 sw = 8'd1; end always #5 clk = ~clk; endmodule \\ ### LMS滤波器 最后也是最复杂的滤波器是Block LMS滤波器。它还具有四个计算模块,一次可以处理四个数据样本,但是它具有一个简单的状态机,可以将其操作分成两个时钟周期。一个时钟周期计算输出值,而另一个时钟周期更新权重。\\ {{ ::block_lms_filter.png |}} ##### BLMS_Block.v `timescale 1ns / 1ps module BLMS_Block( input clk, //Filter clock. input x_en, //X registers enable. input w_en, //Weight registers enable. input mux_sel, //MUX selection input. input dmux_sel, //DMUX selection input. input signed [15:0]xin0, // input signed [15:0]xin1, //16-bit Data input. input signed [15:0]xin2, // input signed [15:0]xin3, // input signed [15:0]r0, // input signed [15:0]r1, //Weight adjust input. input signed [15:0]r2, // input signed [15:0]r3, // output signed [15:0]u0, // output signed [15:0]u1, //u output for calculating y. output signed [15:0]u2, // output signed [15:0]u3, // output reg signed [15:0]xout0 = 16'd0, // output reg signed [15:0]xout1 = 16'd0, //Data to cascade output reg signed [15:0]xout2 = 16'd0, //to the next block. output reg signed [15:0]xout3 = 16'd0 // ); //Filter weights. parameter b0 = 16'd0; parameter b1 = 16'd0; parameter b2 = 16'd0; parameter b3 = 16'd0; //Weight registers. reg signed [15:0]_b0 = b0; reg signed [15:0]_b1 = b1; reg signed [15:0]_b2 = b2; reg signed [15:0]_b3 = b3; /*************************Register Unit**************************/ always @(posedge clk) begin if(x_en) begin xout0 <= xin0; xout1 <= xin1; xout2 <= xin2; xout3 <= xin3; end end /******************************IPC1******************************/ //Multiplier inputs. wire signed [15:0]IPC1_mult0_in; wire signed [15:0]IPC1_mult1_in; wire signed [15:0]IPC1_mult2_in; wire signed [15:0]IPC1_mult3_in; //Multiplier outputs. wire signed [31:0]IPC1_mult0_out; wire signed [31:0]IPC1_mult1_out; wire signed [31:0]IPC1_mult2_out; wire signed [31:0]IPC1_mult3_out; //Adder outputs. wire signed [31:0]IPC1_add0; wire signed [31:0]IPC1_add1; wire signed [31:0]IPC1_out; //Do multiplications. assign IPC1_mult0_out = xin3 * IPC1_mult0_in; assign IPC1_mult1_out = xin2 * IPC1_mult1_in; assign IPC1_mult2_out = xin1 * IPC1_mult2_in; assign IPC1_mult3_out = xin0 * IPC1_mult3_in; //Do additions. assign IPC1_add0 = IPC1_mult0_out + IPC1_mult1_out; assign IPC1_add1 = IPC1_mult2_out + IPC1_mult3_out; assign IPC1_out = IPC1_add0 + IPC1_add1; /******************************IPC2******************************/ //Multiplier inputs. wire signed [15:0]IPC2_mult0_in; wire signed [15:0]IPC2_mult1_in; wire signed [15:0]IPC2_mult2_in; wire signed [15:0]IPC2_mult3_in; //Multiplier outputs. wire signed [31:0]IPC2_mult0_out; wire signed [31:0]IPC2_mult1_out; wire signed [31:0]IPC2_mult2_out; wire signed [31:0]IPC2_mult3_out; //Adder outputs. wire signed [31:0]IPC2_add0; wire signed [31:0]IPC2_add1; wire signed [31:0]IPC2_out; //Do multiplications. assign IPC2_mult0_out = xin2 * IPC2_mult0_in; assign IPC2_mult1_out = xin1 * IPC2_mult1_in; assign IPC2_mult2_out = xin0 * IPC2_mult2_in; assign IPC2_mult3_out = xout3 * IPC2_mult3_in; //Do additions. assign IPC2_add0 = IPC2_mult0_out + IPC2_mult1_out; assign IPC2_add1 = IPC2_mult2_out + IPC2_mult3_out; assign IPC2_out = IPC2_add0 + IPC2_add1; /******************************IPC3******************************/ //Multiplier inputs. wire signed [15:0]IPC3_mult0_in; wire signed [15:0]IPC3_mult1_in; wire signed [15:0]IPC3_mult2_in; wire signed [15:0]IPC3_mult3_in; //Multiplier outputs. wire signed [31:0]IPC3_mult0_out; wire signed [31:0]IPC3_mult1_out; wire signed [31:0]IPC3_mult2_out; wire signed [31:0]IPC3_mult3_out; //Adder outputs. wire signed [31:0]IPC3_add0; wire signed [31:0]IPC3_add1; wire signed [31:0]IPC3_out; //Do multiplications. assign IPC3_mult0_out = xin1 * IPC3_mult0_in; assign IPC3_mult1_out = xin0 * IPC3_mult1_in; assign IPC3_mult2_out = xout3 * IPC3_mult2_in; assign IPC3_mult3_out = xout2 * IPC3_mult3_in; //Do additions. assign IPC3_add0 = IPC3_mult0_out + IPC3_mult1_out; assign IPC3_add1 = IPC3_mult2_out + IPC3_mult3_out; assign IPC3_out = IPC3_add0 + IPC3_add1; /******************************IPC4******************************/ //Multiplier inputs. wire signed [15:0]IPC4_mult0_in; wire signed [15:0]IPC4_mult1_in; wire signed [15:0]IPC4_mult2_in; wire signed [15:0]IPC4_mult3_in; //Multiplier outputs. wire signed [31:0]IPC4_mult0_out; wire signed [31:0]IPC4_mult1_out; wire signed [31:0]IPC4_mult2_out; wire signed [31:0]IPC4_mult3_out; //Adder outputs. wire signed [31:0]IPC4_add0; wire signed [31:0]IPC4_add1; wire signed [31:0]IPC4_out; //Do multiplications. assign IPC4_mult0_out = xin0 * IPC4_mult0_in; assign IPC4_mult1_out = xout3 * IPC4_mult1_in; assign IPC4_mult2_out = xout2 * IPC4_mult2_in; assign IPC4_mult3_out = xout1 * IPC4_mult3_in; //Do additions. assign IPC4_add0 = IPC4_mult0_out + IPC4_mult1_out; assign IPC4_add1 = IPC4_mult2_out + IPC4_mult3_out; assign IPC4_out = IPC4_add0 + IPC4_add1; /***************************DMUX Unit****************************/ //DMUX outputs. wire signed [15:0]dmux1_out0; wire signed [15:0]dmux1_out1; wire signed [15:0]dmux2_out0; wire signed [15:0]dmux2_out1; wire signed [15:0]dmux3_out0; wire signed [15:0]dmux3_out1; wire signed [15:0]dmux4_out0; wire signed [15:0]dmux4_out1; //Assign outputs. assign dmux1_out0 = dmux_sel ? 16'd0 : IPC1_out[31:16]; assign dmux1_out1 = dmux_sel ? IPC1_out[31:16] : 16'd0; assign dmux2_out0 = dmux_sel ? 16'd0 : IPC2_out[31:16]; assign dmux2_out1 = dmux_sel ? IPC2_out[31:16] : 16'd0; assign dmux3_out0 = dmux_sel ? 16'd0 : IPC3_out[31:16]; assign dmux3_out1 = dmux_sel ? IPC3_out[31:16] : 16'd0; assign dmux4_out0 = dmux_sel ? 16'd0 : IPC4_out[31:16]; assign dmux4_out1 = dmux_sel ? IPC4_out[31:16] : 16'd0; //Assign u values. assign u3 = dmux1_out1; assign u2 = dmux2_out1; assign u1 = dmux3_out1; assign u0 = dmux4_out1; /****************************WU Unit*****************************/ always @(posedge clk) begin if(w_en) begin _b0 <= _b0 + dmux1_out0; _b1 <= _b1 + dmux2_out0; _b2 <= _b2 + dmux3_out0; _b3 <= _b3 + dmux4_out0; end end /****************************MUX Unit****************************/ //MUX outputs. wire signed [15:0]mux0_out; wire signed [15:0]mux1_out; wire signed [15:0]mux2_out; wire signed [15:0]mux3_out; //Assign MUX outputs. assign mux0_out = mux_sel ? _b0 : r0; assign mux1_out = mux_sel ? _b1 : r1; assign mux2_out = mux_sel ? _b2 : r2; assign mux3_out = mux_sel ? _b3 : r3; //Assign MUX outputs to IPC inputs. assign IPC1_mult0_in = mux0_out; assign IPC2_mult0_in = mux0_out; assign IPC3_mult0_in = mux0_out; assign IPC4_mult0_in = mux0_out; assign IPC1_mult1_in = mux1_out; assign IPC2_mult1_in = mux1_out; assign IPC3_mult1_in = mux1_out; assign IPC4_mult1_in = mux1_out; assign IPC1_mult2_in = mux2_out; assign IPC2_mult2_in = mux2_out; assign IPC3_mult2_in = mux2_out; assign IPC4_mult2_in = mux2_out; assign IPC1_mult3_in = mux3_out; assign IPC2_mult3_in = mux3_out; assign IPC3_mult3_in = mux3_out; assign IPC4_mult3_in = mux3_out; endmodule \\ ##### BLMS_ECU.v `timescale 1ns / 1ps module BLMS_ECU( input clk, //Filter clock. input r_en, //Weight adjust registers enable. input signed [15:0]din0, // input signed [15:0]din1, //Desired inputs. input signed [15:0]din2, // input signed [15:0]din3, // input signed [15:0]yin0, // input signed [15:0]yin1, //From filter output. input signed [15:0]yin2, // input signed [15:0]yin3, // output reg signed [15:0]r0 = 16'd0, // output reg signed [15:0]r1 = 16'd0, //Stepped error output. output reg signed [15:0]r2 = 16'd0, // output reg signed [15:0]r3 = 16'd0 // ); //Adder outputs. wire signed [15:0]add_out0; wire signed [15:0]add_out1; wire signed [15:0]add_out2; wire signed [15:0]add_out3; //Mu outputs. wire signed [31:0]mu0; wire signed [31:0]mu1; wire signed [31:0]mu2; wire signed [31:0]mu3; //Assign outputs. assign add_out0 = din0 - yin0; assign add_out1 = din1 - yin1; assign add_out2 = din2 - yin2; assign add_out3 = din3 - yin3; //Multiply error by mu (hard coded). assign mu0 = add_out0 << 15; assign mu1 = add_out1 << 15; assign mu2 = add_out2 << 15; assign mu3 = add_out3 << 15; //Update delay registers. always @(posedge clk) begin if(r_en) begin r0 <= mu0[31:16]; r1 <= mu1[31:16]; r2 <= mu2[31:16]; r3 <= mu3[31:16]; end end endmodule \\ ##### BLMS_Top.v `timescale 1ns / 1ps module BLMS_Top( input clk, input [7:0]sw, output [7:0]JA ); wire clk_50MHz; wire clk_25MHz; wire en; wire signed [15:0]tonegen_out; //Output of the tone lookup table. wire signed [15:0]fout; //Output of the FIR filter. wire signed [15:0]lfsr_out; //16-bit Random noise variable. wire signed [9:0]rnd; //10-bit noise. wire signed [15:0]tone_and_noise; //Combination of tone and noise. wire signed [15:0]serial_dout; //Serialized output. //Selected desired output. wire signed [15:0]mout; //Parallelized desired output. wire signed [15:0]dout0; wire signed [15:0]dout1; wire signed [15:0]dout2; wire signed [15:0]dout3; //Parallelized input to BLMS filter. wire signed [15:0]blms_din0; wire signed [15:0]blms_din1; wire signed [15:0]blms_din2; wire signed [15:0]blms_din3; //Stepped error. wire signed [15:0]r0; wire signed [15:0]r1; wire signed [15:0]r2; wire signed [15:0]r3; //BLMS block1 outputs. wire signed [15:0]b1_x0_out; wire signed [15:0]b1_x1_out; wire signed [15:0]b1_x2_out; wire signed [15:0]b1_x3_out; wire signed [15:0]b1_u0; wire signed [15:0]b1_u1; wire signed [15:0]b1_u2; wire signed [15:0]b1_u3; //BLMS block2 outputs. wire signed [15:0]b2_x0_out; wire signed [15:0]b2_x1_out; wire signed [15:0]b2_x2_out; wire signed [15:0]b2_x3_out; wire signed [15:0]b2_u0; wire signed [15:0]b2_u1; wire signed [15:0]b2_u2; wire signed [15:0]b2_u3; //BLMS block3 outputs. wire signed [15:0]b3_x0_out; wire signed [15:0]b3_x1_out; wire signed [15:0]b3_x2_out; wire signed [15:0]b3_x3_out; wire signed [15:0]b3_u0; wire signed [15:0]b3_u1; wire signed [15:0]b3_u2; wire signed [15:0]b3_u3; //BLMS block4 outputs. wire signed [15:0]b4_x0_out; wire signed [15:0]b4_x1_out; wire signed [15:0]b4_x2_out; wire signed [15:0]b4_x3_out; wire signed [15:0]b4_u0; wire signed [15:0]b4_u1; wire signed [15:0]b4_u2; wire signed [15:0]b4_u3; //BLMS filter outputs. wire signed [15:0]y0; wire signed [15:0]y1; wire signed [15:0]y2; wire signed [15:0]y3; reg [1:0]en_counter = 2'b00; //Generate enable signal for BLMS filter. always@(posedge clk_50MHz) begin en_counter <= en_counter + 1'b1; end //Toggle enable signal. assign en = (en_counter == 2'b10|| en_counter == 2'b11) ? 1'b1 : 1'b0; //Instantiate clock generator. clk_wiz_0 clk_wiz(.clk_in1(clk), .clk_out1(clk_50MHz), .clk_out2(clk_25MHz)); //Instantiate tone generator. ToneGen tg(.clk(clk_50MHz), .en(1'b1), .dout(tonegen_out)); //Instatiate LFSR for random noise generation. lfsr lr(.clk(clk_50MHz), .en(1'b1), .rst(1'b0), .lfsr_out(lfsr_out)); //Add the random noise to the tone. assign rnd = lfsr_out[15:6]; assign tone_and_noise = tonegen_out + rnd; //Instantiate the FIR filter. FIR_Filter ff(.clk(clk_50MHz), .en(1'b1), .din(tone_and_noise), .dout(fout)); //Choose filtered or unfiltered output based on sw0. assign mout = sw[0] ? fout : tone_and_noise; //Instantiate desired out div 4. Data_Div4 d4_fir(.clk(clk_50MHz), .en(1'b1), .din(mout), .d0_out(dout0), .d1_out(dout1), .d2_out(dout2), .d3_out(dout3)); //Instantiate BLMS filter div 4. Data_Div4 d4_blms(.clk(clk_50MHz), .en(1'b1), .din(tone_and_noise), .d0_out(blms_din0), .d1_out(blms_din1), .d2_out(blms_din2), .d3_out(blms_din3)); //Build 16-tap block FIR filter. BLMS_Block b1(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(blms_din0), .xin1(blms_din1), .xin2(blms_din2), .xin3(blms_din3), .r0(r0), .r1(r1), .r2(r2), .r3(r3), .u0(b1_u0), .u1(b1_u1), .u2(b1_u2), .u3(b1_u3), .xout0(b1_x0_out), .xout1(b1_x1_out), .xout2(b1_x2_out), .xout3(b1_x3_out)); BLMS_Block b2(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b1_x0_out), .xin1(b1_x1_out), .xin2(b1_x2_out), .xin3(b1_x3_out), .r0(r0), .r1(r1), .r2(r2), .r3(r3), .u0(b2_u0), .u1(b2_u1), .u2(b2_u2), .u3(b2_u3), .xout0(b2_x0_out), .xout1(b2_x1_out), .xout2(b2_x2_out), .xout3(b2_x3_out)); BLMS_Block b3(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b2_x0_out), .xin1(b2_x1_out), .xin2(b2_x2_out), .xin3(b2_x3_out), .r0(r0), .r1(r1), .r2(r2), .r3(r3), .u0(b3_u0), .u1(b3_u1), .u2(b3_u2), .u3(b3_u3), .xout0(b3_x0_out), .xout1(b3_x1_out), .xout2(b3_x2_out), .xout3(b3_x3_out)); BLMS_Block b4(.clk(clk_25MHz), .x_en(en), .w_en(en), .mux_sel(~en), .dmux_sel(~en), .xin0(b3_x0_out), .xin1(b3_x1_out), .xin2(b3_x2_out), .xin3(b3_x3_out), .r0(r0), .r1(r1), .r2(r2), .r3(r3), .u0(b4_u0), .u1(b4_u1), .u2(b4_u2), .u3(b4_u3), .xout0(b4_x0_out), .xout1(b4_x1_out), .xout2(b4_x2_out), .xout3(b4_x3_out)); //Add outputs together. assign y0 = b1_u0 + b2_u0 + b3_u0 + b4_u0; assign y1 = b1_u1 + b2_u1 + b3_u1 + b4_u1; assign y2 = b1_u2 + b2_u2 + b3_u2 + b4_u2; assign y3 = b1_u3 + b2_u3 + b3_u3 + b4_u3; //Instantiate ECU module. BLMS_ECU be(.clk(clk_25MHz), .r_en(~en), .din0(dout0), .din1(dout1), .din2(dout2), .din3(dout3), .yin0(y0), .yin1(y1), .yin2(y2), .yin3(y3), .r0(r0), .r1(r1), .r2(r2), .r3(r3)); //Serialize the BLMS output. Data_Mult4 dm(.clk(clk_50MHz), .en(1'b1), .d0_in(y0), .d1_in(y1), .d2_in(y2), .d3_in(y3), .dout(serial_dout)); //Take only the upper 8 bits and make it unsigned. assign {JA[3:0], JA[7:4]} = serial_dout[15:8] + 8'd128; //assign JA[7:0] = serial_dout[15:8] + 8'd128; //assign {JA[3:0], JA[7:4]} = sw[7:0]; endmodule \\ ##### ToneGen.v `timescale 1ns/1ps module ToneGen( input clk, input en, output [15:0]dout ); //Tone generation data. At a 44KHz sampling rate, the lookup table //generates a 440Hz and 4.4KHz tone mixed together. reg [15:0]tonetbl[99:0]; //Pointer into the tone table. reg [6:0]toneptr = 7'h00; initial begin tonetbl[0] = 2743; tonetbl[1] = 4538; tonetbl[2] = 4799; tonetbl[3] = 3526; tonetbl[4] = 1303; tonetbl[5] = -926; tonetbl[6] = -2214; tonetbl[7] = -1978; tonetbl[8] = -219; tonetbl[9] = 2478; tonetbl[10] = 5165; tonetbl[11] = 6895; tonetbl[12] = 7083; tonetbl[13] = 5726; tonetbl[14] = 3411; tonetbl[15] = 1082; tonetbl[16] = -315; tonetbl[17] = -195; tonetbl[18] = 1442; tonetbl[19] = 4009; tonetbl[20] = 6561; tonetbl[21] = 8151; tonetbl[22] = 8192; tonetbl[23] = 6685; tonetbl[24] = 4216; tonetbl[25] = 1729; tonetbl[26] = 173; tonetbl[27] = 132; tonetbl[28] = 1605; tonetbl[29] = 4009; tonetbl[30] = 6398; tonetbl[31] = 7824; tonetbl[32] = 7704; tonetbl[33] = 6037; tonetbl[34] = 3411; tonetbl[35] = 770; tonetbl[36] = -936; tonetbl[37] = -1124; tonetbl[38] = 209; tonetbl[39] = 2478; tonetbl[40] = 4737; tonetbl[41] = 6040; tonetbl[42] = 5804; tonetbl[43] = 4030; tonetbl[44] = 1303; tonetbl[45] = -1430; tonetbl[46] = -3219; tonetbl[47] = -3481; tonetbl[48] = -2213; tonetbl[49] = 0; tonetbl[50] = 2213; tonetbl[51] = 3481; tonetbl[52] = 3219; tonetbl[53] = 1430; tonetbl[54] = -1303; tonetbl[55] = -4030; tonetbl[56] = -5804; tonetbl[57] = -6040; tonetbl[58] = -4737; tonetbl[59] = -2478; tonetbl[60] = -209; tonetbl[61] = 1124; tonetbl[62] = 936; tonetbl[63] = -770; tonetbl[64] = -3411; tonetbl[65] = -6037; tonetbl[66] = -7704; tonetbl[67] = -7824; tonetbl[68] = -6398; tonetbl[69] = -4009; tonetbl[70] = -1605; tonetbl[71] = -132; tonetbl[72] = -173; tonetbl[73] = -1729; tonetbl[74] = -4216; tonetbl[75] = -6685; tonetbl[76] = -8192; tonetbl[77] = -8151; tonetbl[78] = -6561; tonetbl[79] = -4009; tonetbl[80] = -1442; tonetbl[81] = 195; tonetbl[82] = 315; tonetbl[83] = -1082; tonetbl[84] = -3411; tonetbl[85] = -5726; tonetbl[86] = -7083; tonetbl[87] = -6895; tonetbl[88] = -5165; tonetbl[89] = -2478; tonetbl[90] = 219; tonetbl[91] = 1978; tonetbl[92] = 2214; tonetbl[93] = 926; tonetbl[94] = -1303; tonetbl[95] = -3526; tonetbl[96] = -4799; tonetbl[97] = -4538; tonetbl[98] = -2743; tonetbl[99] = 0; end //Assign the output to the value in the lookup table //pointed to by toneptr. assign dout = tonetbl[toneptr]; //Increment through the tone lookup table and wrap back //to zero when at the end. always @(posedge clk) begin if(en) begin if(toneptr == 7'd99) begin toneptr <= 7'd0; end else begin toneptr <= toneptr + 1'b1; end end end endmodule \\ ##### Data_Div4.v `timescale 1ns / 1ps module Data_Div4( input clk, input en, input [15:0]din, output reg en_out = 1'b0, output reg [15:0]d0_out = 16'd0, output reg [15:0]d1_out = 16'd0, output reg [15:0]d2_out = 16'd0, output reg [15:0]d3_out = 16'd0 ); reg [1:0]count = 2'd0; //Internal registers for holding data. reg [15:0]d0 = 16'd0; reg [15:0]d1 = 16'd0; reg [15:0]d2 = 16'd0; always @(posedge clk) begin if(en) begin count <= count + 1'b1; if(count == 2'b00) begin d0 <= din; en_out <= 1'b0; end else if(count == 2'b01) begin d1 <= din; en_out <= 1'b0; end else if(count == 2'b10) begin d2 <= din; en_out <= 1'b0; end else begin d0_out <= d0; d1_out <= d1; d2_out <= d2; d3_out <= din; en_out <= 1'b1; end end end endmodule \\ ##### Data_Mult4.v `timescale 1ns / 1ps module Data_Mult4( input clk, input en, input [15:0]d0_in, input [15:0]d1_in, input [15:0]d2_in, input [15:0]d3_in, output reg [15:0]dout = 16'd0 ); reg [1:0]count = 2'd0; //Internal registers for holding data. reg [15:0]d0 = 16'd0; reg [15:0]d1 = 16'd0; reg [15:0]d2 = 16'd0; reg [15:0]d3 = 16'd0; always @(posedge clk) begin if(en) begin count <= count + 1'b1; if(count == 2'b00) begin d0 <= d0_in; d1 <= d1_in; d2 <= d2_in; d3 <= d3_in; dout <= d3; end else if(count == 2'b01) begin dout <= d0; end else if(count == 2'b10) begin dout <= d1; end else begin dout <= d2; end end end endmodule \\ ##### FIR_Filter.v `timescale 1ns / 1ps `define FILT_LENGTH 16 module FIR_Filter( input clk, input en, input [15:0]din, output [15:0]dout ); reg signed [15:0]coeff[`FILT_LENGTH/2-1:0]; //Filter coefficients. reg signed [15:0]delay_line[`FILT_LENGTH-1:0]; //Input delay line. wire [31:0]accum; //Accumulator for output filter calculation. integer i; //Initialization integer. genvar c; //Delay line generation variable. //Calculate value in the accumulator. assign accum = (delay_line[0] + delay_line[15]) * coeff[0] + (delay_line[1] + delay_line[14]) * coeff[1] + (delay_line[2] + delay_line[13]) * coeff[2] + (delay_line[3] + delay_line[12]) * coeff[3] + (delay_line[4] + delay_line[11]) * coeff[4] + (delay_line[5] + delay_line[10]) * coeff[5] + (delay_line[6] + delay_line[9]) * coeff[6] + (delay_line[7] + delay_line[8]) * coeff[7]; //Assign upper 16-bits to output. assign dout = accum[31:16]; initial begin //Load the filter coefficients. coeff[0] = 16'd2552; coeff[1] = 16'd4557; coeff[2] = 16'd5051; coeff[3] = 16'd8006; coeff[4] = 16'd9265; coeff[5] = 16'd11427; coeff[6] = 16'd12396; coeff[7] = 16'd13200; //Initialize delay line. for(i = 0; i < `FILT_LENGTH; i = i+1'b1) begin delay_line[i] = 16'd0; end end //Advance the data through the delay line every clock cycle. generate for (c = `FILT_LENGTH-1; c > 0; c = c - 1) begin: inc_delay always @(posedge clk) begin if(en) delay_line[c] <= delay_line[c-1]; end end endgenerate //Update with input data. always @(posedge clk) begin if(en) delay_line[0] <= din; end endmodule \\ ##### lfsr.v `timescale 1ns / 1ps module lfsr( input clk, input en, input rst, output [15:0]lfsr_out ); //Create a 16-bit linear feedback shift register with //maximal polynomial x^16 + x^14 + x^13 + x^11 + 1. reg [15:0]lfsr = 16'd1; wire feedback; assign feedback = ((lfsr[15] ^ lfsr[13]) ^ lfsr[12]) ^ lfsr[10]; assign lfsr_out = lfsr; //Update the linear shift feedback register. always @(posedge clk) begin if(rst) lfsr <= 16'd1; else if(en) lfsr <= {lfsr[14:0], feedback}; end endmodule \\ ##### BLMS_TB.v `timescale 1ns / 1ps module BLMS_TB; reg clk = 1'b0; reg [7:0]sw = 8'd0; wire [7:0]JA; wire clk_50MHz; wire clk_25MHz; wire signed [15:0]tone_and_noise; wire signed [15:0]fout; wire signed [15:0]dout0; wire signed [15:0]dout1; wire signed [15:0]dout2; wire signed [15:0]dout3; wire signed [15:0]blms_din0; wire signed [15:0]blms_din1; wire signed [15:0]blms_din2; wire signed [15:0]blms_din3; wire en; BLMS_Top uut(.clk(clk), .sw(sw), .JA(JA)); assign clk_50MHz = uut.clk_50MHz; assign clk_25MHz = uut.clk_25MHz; assign tone_and_noise = uut.tone_and_noise; assign fout = uut.fout; assign dout0 = uut.dout0; assign dout1 = uut.dout1; assign dout2 = uut.dout2; assign dout3 = uut.dout3; assign blms_din0 = uut.blms_din0; assign blms_din1 = uut.blms_din1; assign blms_din2 = uut.blms_din2; assign blms_din3 = uut.blms_din3; assign en = uut.en; //Generate 100MHz clock. always #5 clk = ~clk; initial begin #500000 sw = 8'd1; end endmodule \\