屏幕保护系统设计
实验任务
- 任务:基于 STEP-MAX10M08核心板 和 STEP BaseBoard V3.0底板 完成屏幕保护系统设计并观察调试结果
- 要求:通过底板上的VGA接口驱动液晶显示器在800×600@60Hz的模式下显示,实现经典屏幕保护的界面效果,让小脚丫Logo不断反弹移动。
- 解析:将小脚丫Logo取模得到128×128像素的图片数据,通过FPGA编程驱动VGA液晶显示器,实现现经典屏幕保护的界面效果。
实验目的
在图片显示系统实验中我们学习过图片取模的方法,根据取模数据创建ram模块,本实验我们要学习VGA接口液晶显示器的驱动原理及方法,结合图片ram数据,最终实现屏幕保护系统的总体设计。VGA接口显示有固定的模式,本实验800×600@60Hz模式需要40MHz的时钟主频,可以按照简易电压表实验中的方法例化PLL的IP核实现。
- 了解VGA接口时序及相关原理
- 学习VGA接口驱动方法,完成VGA驱动设计
- 完成屏幕保护系统设计实现
设计框图
根据前面的实验解析我们可以得知,该设计总体可以拆分成如下功能模块实现,
- pll:pll IP核模块例化,倍频产生40MHz VGA主频时钟
- VgaModule:VGA接口驱动模块,屏保显示控制 * steprom:图片取模数据存储器
实验原理
VGA接口介绍
VGA(Video Graphics Array)是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用,VGA接口定义如下:
VGA接口定义如下:
一个标准的VGA接口硬件连接应该有以下端口:
- 红绿蓝三色信号(R\G\B)
- 行场同步信号(HS\VS)
其中三色信号(R\G\B)都是模拟信号,行场同步信号(HS\VS)都是数字信号。
对于VGA的接口模拟电压(R\G\B),为0~0.714V范围峰峰值,0代表无色,0.714代表满色,一些非标准的显示器使用的是1Vpp的满色电平。三基色信号源端和终端匹配电阻均为75欧姆,如下图所示:
FPGA为数字逻辑器件,想要得到0~0.714V范围电压主要有两种方法,DAC转换方式和电阻分压方式,我们的扩展板卡上就是采用的电阻分压的方式,因VGA显示器端有75欧的下拉电阻,为了得到0.714V的电压我们给RGB信号线上串入270欧姆的电阻,3.3V*75/(270+75)=0.717V。如下图所示:
当FPGA驱动输出高电平(3.3V)时,模拟分压为0.714V,为满色,当FPGA驱动输出低电平(0V)时,模拟分压为0V,为无色,这样RGB三基色都对应两种状态输出,共有2^3=8种颜色输出。
VGA 接口时序是对其实现驱动与控制的关键所在,也是难点所在。难不光难在时序的产生,更多的是在于处理速度上的问题。VGA扫描显示其实就是两条线,一个是行扫描,一个是场扫描,在行有效和场有效的时候把数据发送给VGA即可显示了。显示标准就是行分辨率x列分辨率@60hz即一秒屏幕刷新60次,以800×600@60Hz模式为例,即行为800个像素,场为600个像素。
显示器扫描一般采用逐行扫描的方式实现:逐行扫描是扫描从屏幕左上角一点开始,从左像右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT对电子束进行消隐,行与行之间的返回过程称为水平消隐,也称行消隐(HBlank),每行结束时,用行同步信号进行同步;当扫描完所有的行,形成一帧,扫描点扫描完一帧后,要从图像的右下角返回到图像的左上角,开始新一帧的扫描,这一时间间隔,叫做垂直消隐,也称场消隐(VBlank),用场同步信号进行场同步。
VGA显示常用模式列举如下:
VGA模块硬件连接
以下是STEP BaseBoard V3.0底板上的VGA模块电路,其电路图如下:
底板上的VGA显示电路与1.8寸串行彩色液晶屏电路复用部分FPGA管脚,两者不能同时使用,当使用VGA接口模块电路时,FPGA直接驱动VGA接口完成VGA液晶显示器控制即可。VGA硬件采用电阻分压方式连接,每个基色智能显示无色或满色,所以显示效果最多有2^3=8种颜色显示(包含黑色)。
VGA模块驱动设计
端口列表中三基色控制管脚定义为vga[2:0],高位到低位依次接红绿蓝,那么8中颜色对应的数据如下:
output reg [2:0] vga; // vga,MSB~LSB = {R,G,B} localparam RED = 3'b100, GREEN = 3'b010, BLUE = 3'b001; localparam YELLOW = 3'b110, CYAN = 3'b011, PURPLE = 3'b101; localparam WHITE = 3'b111, BLACK = 3'b000;
本实验使用800×600@60Hz的VGA显示模式,首先将该VGA显示模式下的参数定义,在40MHz的主频下,参数如下:
水平方向 | |||
同步脉冲 Thp | 后廊 Thb | 有效线数 Thd | 前廊 Thf |
128 | 88 | 800 | 40 |
垂直方向 | |||
同步脉冲 Thp | 后廊 Thb | 有效线数 Thd | 前廊 Thf |
4 | 23 | 600 | 1 |
将参数定义,更改VGA显示模式时,只需要更改下面参数,参数定义如下:
//-- Horizonal timing information `define HSYNC_A 16'd128 // 128 `define HSYNC_B 16'd216 // 128 + 88 `define HSYNC_C 16'd1016 // 128 + 88 + 800 `define HSYNC_D 16'd1056 // 128 + 88 + 800 + 40 //-- Vertical timing information `define VSYNC_O 16'd4 // 4 `define VSYNC_P 16'd27 // 4 + 23 `define VSYNC_Q 16'd627 // 4 + 23 + 600 `define VSYNC_R 16'd628 // 4 + 23 + 600 + 1
根据VGA扫描的时序,在40MHz主频时钟下,每一行需要1056个主频时钟周期的时间,而每一帧需要628行扫描时间,我们定义两个计数器,分别对主频时钟和行扫描进行计数,程序实现如下:
reg [15:0] x_cnt,y_cnt; always @ (posedge clk or negedge rst_n) // Count for HSYNC if(!rst_n) x_cnt <= 16'd1; else if(x_cnt == `HSYNC_D) x_cnt <= 16'd1; else x_cnt <= x_cnt + 1'b1; always @ (posedge clk or negedge rst_n) // Count for VSYNC if(!rst_n) y_cnt <= 16'd1; else if(x_cnt == `HSYNC_D) begin if(y_cnt == `VSYNC_R) y_cnt <= 16'd1; else y_cnt <= y_cnt + 1'b1; end else y_cnt <= y_cnt;
当行计数器xcnt计数到1056且场计数器ycnt计数到628时,就是VGA扫描一帧的时间,行计数和场计数开始的时候为同步信号,行场同步信号端口输出,根据时序要求程序实现如下:
output reg sync_v; // sync_v output reg sync_h; // sync_h always @ (posedge clk or negedge rst_n) // HSYNC signal if(!rst_n) sync_h <= 1'b1; else if(x_cnt <= `HSYNC_A) sync_h <= 1'b0; else sync_h <= 1'b1; always @ (posedge clk or negedge rst_n) // VSYNC signal if(!rst_n) sync_v <= 1'b1; else if(y_cnt <= `VSYNC_O) sync_v <= 1'b0; else sync_v <= 1'b1;
行同步和场同步的信号有了,接下来就是三基色数据的控制了,如果整个扫描过程中三基色端口一直输出红色数据,那么我们就可以看到整个显示器显示红色,整个扫描过程分为消隐区和显示区,只有在显示区的数据才能显示出来,落在消隐区的颜色数据没有任何意义,显示区就是当行场计数器都在对应有效线数的区间。即是说,如果我们让三基色端口只在行计数器xcnt计数在216~1056之间且场计数器ycnt计数在27~627之间时输出红色数据,依然可以看到整个显示器显示红色。
屏幕保护实验需要小脚丫Logo图片显示并反弹移动,图片显示在液晶显示器上我们需要知道图片所在显示区的坐标,图片宽度和高度已知,我们以图片左上角的像素点作为基点,就可以知道图片ram数据中每个数据对应的坐标,假设我们知道了图片基点的坐标为(xset,yset)。图片的显示程序实现如下:
注:这里讲的坐标是是以行计数器xcnt和场计数器ycnt为基准的。
`define P_WIDTH 8'd128 // 图片像素的水平宽度 `define P_DEPTH 8'd128 // 图片像素的垂直高度 always @ (posedge clk or negedge rst_n) // rom address if(!rst_n) rom_addr <= 1'b0; else if((x_cnt>=x_set)&(x_cnt<(x_set+`P_WIDTH))&(y_cnt>=y_set)&(y_cnt<(y_set+`P_DEPTH))) rom_addr <= y_cnt - y_set; else rom_addr <= rom_addr; always @ (posedge clk or negedge rst_n) // rom data display if(!rst_n) vga <= BLACK; else if((x_cnt>=x_set)&(x_cnt<(x_set+`P_WIDTH))&(y_cnt>=y_set)&(y_cnt<(y_set+`P_DEPTH))) if(rom_data[x_cnt - x_set]) vga <= color; else vga <= BLACK; else vga <= BLACK;
图片可能显示在屏幕的任何位置,那么基点(xset,yset)的移动轨迹范围为上图中红色虚线框区域,只要控制基点移动和反弹就可以实现图片的移动和反弹,这里需要考虑两个参数:移动速度和反弹方向。
移动速度
移动速度就是基点(xset,yset)变化的速度,我们设置一个计数器延迟来控制基点的变化速度,cnt的计数周期为2^19 * 1000ms / 12000000 = 44ms,基点坐标每秒移动次数为1s / 44ms = 23次,计数程序实现如下:
reg [18:0] cnt; always @ (posedge clk or negedge rst_n) // delay count if(!rst_n) cnt <= 1'b0; else cnt <= cnt + 1'b1;
反弹方向
屏幕保护图片碰到显示器边沿会反弹,反弹效果同镜面反射一样,与边沿平行方向不变,垂直方向反向,所以行方向和场方向的反弹控制是相互独立的,实现方法相同,这里我们以行(水平)方向的控制为例,程序实现如下:
always @ (posedge clk or negedge rst_n) //水平方向反弹标志 if(!rst_n) x_flag <= 1'b1; else if(x_set == `HSYNC_B) x_flag <= 1'b1; else if(x_set == (`HSYNC_C - `P_WIDTH)) x_flag <= 1'b0; else x_flag <= x_flag; always @ (posedge clk or negedge rst_n) //根据水平方向反弹标志移动基点 if(!rst_n) x_set <= `HSYNC_B; else if(!cnt) //控制基点行坐标x_set的变化速度 if(x_flag) x_set <= x_set + 1'b1; //根据水平方向反弹标志移动基点 else x_set <= x_set - 1'b1; else x_set <= x_set;
系统总体实现
例化pll IP核得到40MHz时钟信号,提供给VGA驱动模块做时钟信号,例化配置方法在简易电压表实验中有讲解,这里不再重复。
屏幕保护图片数据的ram模块,提供小脚丫Logo图片数据,图片显示系统实验中也有相关内容,调整一下图像分辨率的宽度和高度就可以直接使用。
综合后的设计框图如下:
实验步骤
- 双击打开Quartus Prime工具软件;
- 新建工程:File → New Project Wizard(工程命名,工程目录选择,设备型号选择,EDA工具选择);
- 新建文件:File → New → Verilog HDL File,键入设计代码并保存;
- 设计综合:双击Tasks窗口页面下的Analysis & Synthesis对代码进行综合;
- 管脚约束:Assignments → Assignment Editor,根据项目需求分配管脚;
- 设计编译:双击Tasks窗口页面下的Compile Design对设计进行整体编译并生成配置文件;
- 程序烧录:点击Tools → Programmer打开配置工具,Program进行下载;
- 观察设计运行结果。
实验现象
将程序加载到FPGA中,使用VGA线连接液晶显示器和FPGA底板,观察显示现象。小脚丫Logo图片在显示屏上移动,到达边沿后反弹,每次反弹都会颜色改变,共有6中颜色。