1,项目要求:
-
旋转电位计可以产生0-3.3V的电压
-
利用板上的串行ADC对电压进行转换
-
将电压值在板上的OLED屏幕上显示出来
2,项目系统设计
项目需求分析:在本项目中,需要实现对adc芯片协议解析及逻辑编写,oled协议解析,数据转换,数据格式转换等内容。
由于板载资源丰富,包含流水灯,按键,拨码开关,数码管,温度传感器,adc采集,oled显示,为实现项目需求,同时尽可能多的使用板载资源,但由于第一次接触fpga,能力有限,本次项目中使用了led流水灯做系统运行指示灯,数码管显示ADC采集的数字量,通过ds18b20采集环境温度通过oled显示,同时通过oled屏显示转换后的电压值。
系统框图简图如下:
3,系统逻辑图
下图为fpga内部逻辑图,主要有6部分组成,adc_to_vol_uut功能为将adc采集到的数字量装换为0-33000(电压0-3.3V放大1000倍),bin_to_cbd_uut功能是将二进制数字转化为bcd码,方便oled显示,oled_12832_uut功能为oled驱动单元,显示电压及温度,ds18b2n_uut功能是温度采集驱动单元,ads7868_adc功能为模拟信号采集驱动单元,seg_led功能为数码管驱动单元
下图是引脚分配及配置图:
4、模块工程代码:
(1)ADS7868_ADC模块:此模块读取模拟通道电压值转换成数字量,该芯片转换精度为8位,即采集是数字量0-255。该模块包含:输入信号clk(为模块提供时钟信号),res_n(低电平复位信号),CS(adc芯片使能信号),adc_clk(adc芯片时钟信号),adc_dat(adc芯片数据输入输出引脚),adc_done(adc完成标志状态寄存器),adc_data(adc芯片读取电压值暂存寄存器),
系统时钟为12M,内部处理进行2分频,clk输出频率为6M,根据数据手册,从发送到读取数据加上起始位,总共34个clk,读取数据速率为:speed=6M/34=176K(bit/s),小于数据手册采样速率,符合逻辑,代码如下:
module ADS7868_ADC
(
input clk, //系统时钟
input rst_n, //系统复位,低有效
output reg adc_cs, //SPI总线CS
output reg adc_clk, //SPI总线SCK
input adc_dat, //SPI总线SDA
output reg adc_done, //ADC采样完成标志
output reg [7:0] adc_data //ADC采样数据
);
localparam HIGH = 1'b1, LOW = 1'b0;
reg [7:0] cnt; //计数器
always @(posedge clk or negedge rst_n)
if(!rst_n) cnt <= 1'b0;
else if(cnt >= 8'd34) cnt <= 1'b0;
else cnt <= cnt + 1'b1;
reg [7:0] data;
always @(posedge clk or negedge rst_n)
if(!rst_n) begin
adc_cs <= HIGH; adc_clk <= HIGH;
end else case(cnt)
8'd0 : begin adc_cs <= HIGH; adc_clk <= HIGH; end
8'd1 : begin adc_cs <= LOW; adc_clk <= HIGH; end
8'd2,
8'd4,
8'd6,
8'd8,
8'd10,
8'd12,
8'd14,
8'd16,
8'd18,
8'd20,
8'd22,
8'd24,
8'd26,
8'd28,
8'd30,
8'd32:
begin adc_cs <= LOW; adc_clk <= LOW; end
8'd3 : begin adc_cs <= LOW; adc_clk <= HIGH; end //0
8'd5 : begin adc_cs <= LOW; adc_clk <= HIGH; end //1
8'd7 : begin adc_cs <= LOW; adc_clk <= HIGH; end //2
8'd9 : begin adc_cs <= LOW; adc_clk <= HIGH; data[7] <= adc_dat; end //3
8'd11 : begin adc_cs <= LOW; adc_clk <= HIGH; data[6] <= adc_dat; end //4
8'd13 : begin adc_cs <= LOW; adc_clk <= HIGH; data[5] <= adc_dat; end //5
8'd15 : begin adc_cs <= LOW; adc_clk <= HIGH; data[4] <= adc_dat; end //6
8'd17 : begin adc_cs <= LOW; adc_clk <= HIGH; data[3] <= adc_dat; end //7
8'd19 : begin adc_cs <= LOW; adc_clk <= HIGH; data[2] <= adc_dat; end //8
8'd21 : begin adc_cs <= LOW; adc_clk <= HIGH; data[1] <= adc_dat; end //9
8'd23 : begin adc_cs <= LOW; adc_clk <= HIGH; data[0] <= adc_dat; end //10
8'd25 : begin adc_cs <= LOW; adc_clk <= HIGH; adc_data <= data; end //11
8'd27 : begin adc_cs <= LOW; adc_clk <= HIGH; adc_done <= HIGH; end //12
8'd29 : begin adc_cs <= LOW; adc_clk <= HIGH; adc_done <= LOW; end //13
8'd31 : begin adc_cs <= LOW; adc_clk <= HIGH; end //14
8'd33 : begin adc_cs <= LOW; adc_clk <= HIGH; end //15
8'd34 : begin adc_cs <= HIGH; adc_clk <= HIGH; end
default : begin adc_cs <= HIGH; adc_clk <= HIGH; end
endcase
endmodule
(2)ADC数字量转换成电压值模块,该模块实现adc采集的数字量通过电压转换成0-3.3V电压,为了方便后续处理,将电压值放大1000倍,保留整数部分 。该模块包含:res_n(低电平复位信号), adc_code(adc数据输入),vol_code(adc转换后电压值暂存寄存器)代码如下:
module adc_to_vol
(
input rst_n, // system reset, active low
input [7:0] adc_code, // binary code
output reg [15:0] vol_code // bcd code
);
always@(rst_n)begin
if(!rst_n) vol_code <= 0;
else begin
vol_code<=(adc_code*3300)/255;
end
end
endmodule
在OLED的显示模块,输入clk为时钟信号,rst为复位信号,sw为电压数据,t为温度数据,输出csn,rst,dcn,clk,dat 5个信号控制OLED的显示,在MAIN状态下显示,INIT为初始化状态,SCAN为刷屏状态,WRITE为写状态,将数据按照SPI时序发送给屏幕。在输入信号中设置了一个信号位display_flag,通过改变信号位来实现时间和温度数据停止显示,同时又没有使时间停止计数。
module OLED12832
(
input clk, //12MHz系统时钟
input rst_n, //系统复位,低有效
input [24:0] sw, //
input [0:0]status,
input [15:0] t,
output reg oled_csn, //OLCD液晶屏使能
output reg oled_rst, //OLCD液晶屏复位
output reg oled_dcn, //OLCD数据指令控制
output reg oled_clk, //OLCD时钟信号
output reg oled_dat //OLCD数据信号
);
localparam INIT_DEPTH = 16'd25; //LCD初始化的命令的数量
localparam IDLE = 6'h1, MAIN = 6'h2, INIT = 6'h4, SCAN = 6'h8, WRITE = 6'h10, DELAY = 6'h20;
localparam HIGH = 1'b1, LOW = 1'b0;
localparam DATA = 1'b1, CMD = 1'b0;
reg [7:0] cmd [24:0];
reg [39:0] mem [122:0];
reg [15:0] dec [100:0];
reg [7:0] y_p, x_ph, x_pl;
reg [(8*21-1):0] char;
reg [7:0] num, char_reg; //
reg [4:0] cnt_main, cnt_init, cnt_scan, cnt_write;
reg [15:0] num_delay, cnt_delay, cnt;
reg [5:0] state, state_back;
reg[3:0]qianwei;//千位
reg[3:0]baiwei;//百位
reg[3:0]shiwei;//十位
reg[3:0]gewei;//个位
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
cnt_main <= 1'b0; cnt_init <= 1'b0; cnt_scan <= 1'b0; cnt_write <= 1'b0;
y_p <= 1'b0; x_ph <= 1'b0; x_pl <= 1'b0;
num <= 1'b0; char <= 1'b0; char_reg <= 1'b0;
num_delay <= 16'd5; cnt_delay <= 1'b0; cnt <= 1'b0;
oled_csn <= HIGH; oled_rst <= HIGH; oled_dcn <= CMD; oled_clk <= HIGH; oled_dat <= LOW;
state <= IDLE; state_back <= IDLE;
end else begin
case(state)
IDLE:begin
cnt_main <= 1'b0; cnt_init <= 1'b0; cnt_scan <= 1'b0; cnt_write <= 1'b0;
y_p <= 1'b0; x_ph <= 1'b0; x_pl <= 1'b0;
num <= 1'b0; char <= 1'b0; char_reg <= 1'b0;
num_delay <= 16'd5; cnt_delay <= 1'b0; cnt <= 1'b0;
oled_csn <= HIGH; oled_rst <= HIGH; oled_dcn <= CMD; oled_clk <= HIGH; oled_dat <= LOW;
state <= MAIN; state_back <= MAIN;
end
MAIN:begin
if(cnt_main >= 5'd8) cnt_main <= 5'd5;
else cnt_main <= cnt_main + 1'b1;
if(status==1'b1)
state<=IDLE;
else
begin
case(cnt_main) //MAIN状态
5'd0: begin state <= INIT; end
5'd1: begin y_p <= 8'hb0; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd15; char <= "TEMP ";state <= SCAN; end
5'd2: begin y_p <= 8'hb1; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd15; char <= "---------------";state <= SCAN; end
5'd3: begin y_p <= 8'hb2; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd15; char <= "voltage ";state <= SCAN; end
5'd4: begin y_p <= 8'hb3; x_ph <= 8'h10; x_pl <= 8'h00; num <= 5'd15; char <= "---------------";state <= SCAN; end
5'd5: begin y_p <= 8'hb0; x_ph <= 8'h15; x_pl <= 8'h00; num <= 5'd 6; char <= {4'd0,sw[23:20],4'd0,sw[19:16],".",4'd0,sw[15:12]," "}; state <= SCAN; end
5'd6: begin y_p <= 8'hb1; x_ph <= 8'h15; x_pl <= 8'h00; num <= 5'd 6; char <= "------"; state <= SCAN; end
5'd7: begin y_p <= 8'hb2; x_ph <= 8'h15; x_pl <= 8'h00; num <= 5'd 6; char <= {4'd0,t[15:12],".",4'd0,t[11:8],4'd0,t[7:4],4'd0,t[3:0],"V"}; state <= SCAN; end
5'd8: begin y_p <= 8'hb3; x_ph <= 8'h15; x_pl <= 8'h00; num <= 5'd 6; char <= "------"; state <= SCAN; end
default: state <= IDLE;
endcase
end
end
INIT:begin //初始化状态
case(cnt_init)
5'd0: begin oled_rst <= LOW; cnt_init <= cnt_init + 1'b1; end //复位有效
5'd1: begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end //延时大于3us
5'd2: begin oled_rst <= HIGH; cnt_init <= cnt_init + 1'b1; end //复位恢复
5'd3: begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end //延时大于220us
5'd4: begin
if(cnt>=INIT_DEPTH) begin //当25条指令及数据发出后,配置完成
cnt <= 1'b0;
cnt_init <= cnt_init + 1'b1;
end else begin
cnt <= cnt + 1'b1; num_delay <= 16'd5;
oled_dcn <= CMD; char_reg <= cmd[cnt]; state <= WRITE; state_back <= INIT;
end
end
5'd5: begin cnt_init <= 1'b0; state <= MAIN; end //初始化完成,返回MAIN状态
default: state <= IDLE;
endcase
end
SCAN:begin //刷屏状态,从RAM中读取数据刷屏
if(cnt_scan == 5'd11) begin
if(num) cnt_scan <= 5'd3;
else cnt_scan <= cnt_scan + 1'b1;
end else if(cnt_scan == 5'd12) cnt_scan <= 1'b0;
else cnt_scan <= cnt_scan + 1'b1;
case(cnt_scan)
5'd 0: begin oled_dcn <= CMD; char_reg <= y_p; state <= WRITE; state_back <= SCAN; end //定位列页地址
5'd 1: begin oled_dcn <= CMD; char_reg <= x_pl; state <= WRITE; state_back <= SCAN; end //定位行地址低位
5'd 2: begin oled_dcn <= CMD; char_reg <= x_ph; state <= WRITE; state_back <= SCAN; end //定位行地址高位
5'd 3: begin num <= num - 1'b1;end
5'd 4: begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end //将5*8点阵编程8*8
5'd 5: begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end //将5*8点阵编程8*8
5'd 6: begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end //将5*8点阵编程8*8
5'd 7: begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][39:32]; state <= WRITE; state_back <= SCAN; end
5'd 8: begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][31:24]; state <= WRITE; state_back <= SCAN; end
5'd 9: begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][23:16]; state <= WRITE; state_back <= SCAN; end
5'd10: begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][15: 8]; state <= WRITE; state_back <= SCAN; end
5'd11: begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][ 7: 0]; state <= WRITE; state_back <= SCAN; end
5'd12: begin state <= MAIN; end
default: state <= IDLE;
endcase
end
WRITE:begin //WRITE状态,将数据按照SPI时序发送给屏幕
if(cnt_write >= 5'd17) cnt_write <= 1'b0;
else cnt_write <= cnt_write + 1'b1;
case(cnt_write)
5'd 0: begin oled_csn <= LOW; end //9位数据最高位为命令数据控制位
5'd 1: begin oled_clk <= LOW; oled_dat <= char_reg[7]; end //先发高位数据
5'd 2: begin oled_clk <= HIGH; end
5'd 3: begin oled_clk <= LOW; oled_dat <= char_reg[6]; end
5'd 4: begin oled_clk <= HIGH; end
5'd 5: begin oled_clk <= LOW; oled_dat <= char_reg[5]; end
5'd 6: begin oled_clk <= HIGH; end
5'd 7: begin oled_clk <= LOW; oled_dat <= char_reg[4]; end
5'd 8: begin oled_clk <= HIGH; end
5'd 9: begin oled_clk <= LOW; oled_dat <= char_reg[3]; end
5'd10: begin oled_clk <= HIGH; end
5'd11: begin oled_clk <= LOW; oled_dat <= char_reg[2]; end
5'd12: begin oled_clk <= HIGH; end
5'd13: begin oled_clk <= LOW; oled_dat <= char_reg[1]; end
5'd14: begin oled_clk <= HIGH; end
5'd15: begin oled_clk <= LOW; oled_dat <= char_reg[0]; end //后发低位数据
5'd16: begin oled_clk <= HIGH; end
5'd17: begin oled_csn <= HIGH; state <= DELAY; end //
default: state <= IDLE;
endcase
end
DELAY:begin //延时状态
if(cnt_delay >= num_delay) begin
cnt_delay <= 16'd0; state <= state_back;
end else cnt_delay <= cnt_delay + 1'b1;
end
default:state <= IDLE;
endcase
end
end
//OLED配置指令数据
always@(posedge rst_n)
begin
cmd[ 0] = {8'hae};
cmd[ 1] = {8'h00};
cmd[ 2] = {8'h10};
cmd[ 3] = {8'h00};
cmd[ 4] = {8'hb0};
cmd[ 5] = {8'h81};
cmd[ 6] = {8'hff};
cmd[ 7] = {8'ha1};
cmd[ 8] = {8'ha6};
cmd[ 9] = {8'ha8};
cmd[10] = {8'h1f};
cmd[11] = {8'hc8};
cmd[12] = {8'hd3};
cmd[13] = {8'h00};
cmd[14] = {8'hd5};
cmd[15] = {8'h80};
cmd[16] = {8'hd9};
cmd[17] = {8'h1f};
cmd[18] = {8'hda};
cmd[19] = {8'h00};
cmd[20] = {8'hdb};
cmd[21] = {8'h40};
cmd[22] = {8'h8d};
cmd[23] = {8'h14};
cmd[24] = {8'haf};
end
//5*8点阵字库数据
always@(posedge rst_n)
begin
mem[ 0] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E}; // 48 0
mem[ 1] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00}; // 49 1
mem[ 2] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46}; // 50 2
mem[ 3] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31}; // 51 3
mem[ 4] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10}; // 52 4
mem[ 5] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39}; // 53 5
mem[ 6] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30}; // 54 6
mem[ 7] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03}; // 55 7
mem[ 8] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36}; // 56 8
mem[ 9] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E}; // 57 9
mem[ 10] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C}; // 65 A
mem[ 11] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36}; // 66 B
mem[ 12] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22}; // 67 C
mem[ 13] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C}; // 68 D
mem[ 14] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41}; // 69 E
mem[ 15] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01}; // 70 F
mem[ 32] = {8'h00, 8'h00, 8'h00, 8'h00, 8'h00}; // 32 sp
mem[ 33] = {8'h00, 8'h00, 8'h2f, 8'h00, 8'h00}; // 33 !
mem[ 34] = {8'h00, 8'h07, 8'h00, 8'h07, 8'h00}; // 34
mem[ 35] = {8'h14, 8'h7f, 8'h14, 8'h7f, 8'h14}; // 35 #
mem[ 36] = {8'h24, 8'h2a, 8'h7f, 8'h2a, 8'h12}; // 36 $
mem[ 37] = {8'h62, 8'h64, 8'h08, 8'h13, 8'h23}; // 37 %
mem[ 38] = {8'h36, 8'h49, 8'h55, 8'h22, 8'h50}; // 38 &
mem[ 39] = {8'h00, 8'h05, 8'h03, 8'h00, 8'h00}; // 39 '
mem[ 40] = {8'h00, 8'h1c, 8'h22, 8'h41, 8'h00}; // 40 (
mem[ 41] = {8'h00, 8'h41, 8'h22, 8'h1c, 8'h00}; // 41 )
mem[ 42] = {8'h14, 8'h08, 8'h3E, 8'h08, 8'h14}; // 42 *
mem[ 43] = {8'h08, 8'h08, 8'h3E, 8'h08, 8'h08}; // 43 +
mem[ 44] = {8'h00, 8'h00, 8'hA0, 8'h60, 8'h00}; // 44 ,
mem[ 45] = {8'h08, 8'h08, 8'h08, 8'h08, 8'h08}; // 45 -
mem[ 46] = {8'h00, 8'h60, 8'h60, 8'h00, 8'h00}; // 46 .
mem[ 47] = {8'h20, 8'h10, 8'h08, 8'h04, 8'h02}; // 47 /
mem[ 48] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E}; // 48 0
mem[ 49] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00}; // 49 1
mem[ 50] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46}; // 50 2
mem[ 51] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31}; // 51 3
mem[ 52] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10}; // 52 4
mem[ 53] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39}; // 53 5
mem[ 54] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30}; // 54 6
mem[ 55] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03}; // 55 7
mem[ 56] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36}; // 56 8
mem[ 57] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E}; // 57 9
mem[ 58] = {8'h00, 8'h36, 8'h36, 8'h00, 8'h00}; // 58 :
mem[ 59] = {8'h00, 8'h56, 8'h36, 8'h00, 8'h00}; // 59 ;
mem[ 60] = {8'h08, 8'h14, 8'h22, 8'h41, 8'h00}; // 60 <
mem[ 61] = {8'h14, 8'h14, 8'h14, 8'h14, 8'h14}; // 61 =
mem[ 62] = {8'h00, 8'h41, 8'h22, 8'h14, 8'h08}; // 62 >
mem[ 63] = {8'h02, 8'h01, 8'h51, 8'h09, 8'h06}; // 63 ?
mem[ 64] = {8'h32, 8'h49, 8'h59, 8'h51, 8'h3E}; // 64 @
mem[ 65] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C}; // 65 A
mem[ 66] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36}; // 66 B
mem[ 67] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22}; // 67 C
mem[ 68] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C}; // 68 D
mem[ 69] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41}; // 69 E
mem[ 70] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01}; // 70 F
mem[ 71] = {8'h3E, 8'h41, 8'h49, 8'h49, 8'h7A}; // 71 G
mem[ 72] = {8'h7F, 8'h08, 8'h08, 8'h08, 8'h7F}; // 72 H
mem[ 73] = {8'h00, 8'h41, 8'h7F, 8'h41, 8'h00}; // 73 I
mem[ 74] = {8'h20, 8'h40, 8'h41, 8'h3F, 8'h01}; // 74 J
mem[ 75] = {8'h7F, 8'h08, 8'h14, 8'h22, 8'h41}; // 75 K
mem[ 76] = {8'h7F, 8'h40, 8'h40, 8'h40, 8'h40}; // 76 L
mem[ 77] = {8'h7F, 8'h02, 8'h0C, 8'h02, 8'h7F}; // 77 M
mem[ 78] = {8'h7F, 8'h04, 8'h08, 8'h10, 8'h7F}; // 78 N
mem[ 79] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h3E}; // 79 O
mem[ 80] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h06}; // 80 P
mem[ 81] = {8'h3E, 8'h41, 8'h51, 8'h21, 8'h5E}; // 81 Q
mem[ 82] = {8'h7F, 8'h09, 8'h19, 8'h29, 8'h46}; // 82 R
mem[ 83] = {8'h46, 8'h49, 8'h49, 8'h49, 8'h31}; // 83 S
mem[ 84] = {8'h01, 8'h01, 8'h7F, 8'h01, 8'h01}; // 84 T
mem[ 85] = {8'h3F, 8'h40, 8'h40, 8'h40, 8'h3F}; // 85 U
mem[ 86] = {8'h1F, 8'h20, 8'h40, 8'h20, 8'h1F}; // 86 V
mem[ 87] = {8'h3F, 8'h40, 8'h38, 8'h40, 8'h3F}; // 87 W
mem[ 88] = {8'h63, 8'h14, 8'h08, 8'h14, 8'h63}; // 88 X
mem[ 89] = {8'h07, 8'h08, 8'h70, 8'h08, 8'h07}; // 89 Y
mem[ 90] = {8'h61, 8'h51, 8'h49, 8'h45, 8'h43}; // 90 Z
mem[ 91] = {8'h00, 8'h7F, 8'h41, 8'h41, 8'h00}; // 91 [
mem[ 92] = {8'h55, 8'h2A, 8'h55, 8'h2A, 8'h55}; // 92 .
mem[ 93] = {8'h00, 8'h41, 8'h41, 8'h7F, 8'h00}; // 93 ]
mem[ 94] = {8'h04, 8'h02, 8'h01, 8'h02, 8'h04}; // 94 ^
mem[ 95] = {8'h40, 8'h40, 8'h40, 8'h40, 8'h40}; // 95 _
mem[ 96] = {8'h00, 8'h01, 8'h02, 8'h04, 8'h00}; // 96 '
mem[ 97] = {8'h20, 8'h54, 8'h54, 8'h54, 8'h78}; // 97 a
mem[ 98] = {8'h7F, 8'h48, 8'h44, 8'h44, 8'h38}; // 98 b
mem[ 99] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h20}; // 99 c
mem[100] = {8'h38, 8'h44, 8'h44, 8'h48, 8'h7F}; // 100 d
mem[101] = {8'h38, 8'h54, 8'h54, 8'h54, 8'h18}; // 101 e
mem[102] = {8'h08, 8'h7E, 8'h09, 8'h01, 8'h02}; // 102 f
mem[103] = {8'h18, 8'hA4, 8'hA4, 8'hA4, 8'h7C}; // 103 g
mem[104] = {8'h7F, 8'h08, 8'h04, 8'h04, 8'h78}; // 104 h
mem[105] = {8'h00, 8'h44, 8'h7D, 8'h40, 8'h00}; // 105 i
mem[106] = {8'h40, 8'h80, 8'h84, 8'h7D, 8'h00}; // 106 j
mem[107] = {8'h7F, 8'h10, 8'h28, 8'h44, 8'h00}; // 107 k
mem[108] = {8'h00, 8'h41, 8'h7F, 8'h40, 8'h00}; // 108 l
mem[109] = {8'h7C, 8'h04, 8'h18, 8'h04, 8'h78}; // 109 m
mem[110] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h78}; // 110 n
mem[111] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h38}; // 111 o
mem[112] = {8'hFC, 8'h24, 8'h24, 8'h24, 8'h18}; // 112 p
mem[113] = {8'h18, 8'h24, 8'h24, 8'h18, 8'hFC}; // 113 q
mem[114] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h08}; // 114 r
mem[115] = {8'h48, 8'h54, 8'h54, 8'h54, 8'h20}; // 115 s
mem[116] = {8'h04, 8'h3F, 8'h44, 8'h40, 8'h20}; // 116 t
mem[117] = {8'h3C, 8'h40, 8'h40, 8'h20, 8'h7C}; // 117 u
mem[118] = {8'h1C, 8'h20, 8'h40, 8'h20, 8'h1C}; // 118 v
mem[119] = {8'h3C, 8'h40, 8'h30, 8'h40, 8'h3C}; // 119 w
mem[120] = {8'h44, 8'h28, 8'h10, 8'h28, 8'h44}; // 120 x
mem[121] = {8'h1C, 8'hA0, 8'hA0, 8'hA0, 8'h7C}; // 121 y
mem[122] = {8'h44, 8'h64, 8'h54, 8'h4C, 8'h44}; // 122 z
end
always @(posedge rst_n) begin
dec[0]={8'd48,8'd48};
dec[1]={8'd48,8'd49};
dec[2]={8'd48,8'd50};
dec[3]={8'd48,8'd51};
dec[4]={8'd48,8'd52};
dec[5]={8'd48,8'd53};
dec[6]={8'd48,8'd54};
dec[7]={8'd48,8'd55};
dec[8]={8'd48,8'd56};
dec[9]={8'd48,8'd57};
dec[10]={8'd49,8'd48};
dec[11]={8'd49,8'd49};
dec[12]={8'd49,8'd50};
dec[13]={8'd49,8'd51};
dec[14]={8'd49,8'd52};
dec[15]={8'd49,8'd53};
dec[16]={8'd49,8'd54};
dec[17]={8'd49,8'd55};
dec[18]={8'd49,8'd56};
dec[19]={8'd49,8'd57};
dec[20]={8'd50,8'd48};
dec[21]={8'd50,8'd49};
dec[22]={8'd50,8'd50};
dec[23]={8'd50,8'd51};
dec[24]={8'd50,8'd52};
dec[25]={8'd50,8'd53};
dec[26]={8'd50,8'd54};
dec[27]={8'd50,8'd55};
dec[28]={8'd50,8'd56};
dec[29]={8'd50,8'd57};
dec[30]={8'd51,8'd48};
dec[31]={8'd51,8'd49};
dec[32]={8'd51,8'd50};
dec[33]={8'd51,8'd51};
dec[34]={8'd51,8'd52};
dec[35]={8'd51,8'd53};
dec[36]={8'd51,8'd54};
dec[37]={8'd51,8'd55};
dec[38]={8'd51,8'd56};
dec[39]={8'd51,8'd57};
dec[40]={8'd52,8'd48};
dec[41]={8'd52,8'd49};
dec[42]={8'd52,8'd50};
dec[43]={8'd52,8'd51};
dec[44]={8'd52,8'd52};
dec[45]={8'd52,8'd53};
dec[46]={8'd52,8'd54};
dec[47]={8'd52,8'd55};
dec[48]={8'd52,8'd56};
dec[49]={8'd52,8'd57};
dec[50]={8'd53,8'd48};
dec[51]={8'd53,8'd49};
dec[52]={8'd53,8'd50};
dec[53]={8'd53,8'd51};
dec[54]={8'd53,8'd52};
dec[55]={8'd53,8'd53};
dec[56]={8'd53,8'd54};
dec[57]={8'd53,8'd55};
dec[58]={8'd53,8'd56};
dec[59]={8'd53,8'd57};
dec[60]={8'd54,8'd48};
dec[61]={8'd54,8'd49};
dec[62]={8'd54,8'd50};
dec[63]={8'd54,8'd51};
dec[64]={8'd54,8'd52};
dec[65]={8'd54,8'd53};
dec[66]={8'd54,8'd54};
dec[67]={8'd54,8'd55};
dec[68]={8'd54,8'd56};
dec[69]={8'd54,8'd57};
dec[70]={8'd55,8'd48};
dec[71]={8'd55,8'd49};
dec[72]={8'd55,8'd50};
dec[73]={8'd55,8'd51};
dec[74]={8'd55,8'd52};
dec[75]={8'd55,8'd53};
dec[76]={8'd55,8'd54};
dec[77]={8'd55,8'd55};
dec[78]={8'd55,8'd56};
dec[79]={8'd55,8'd57};
dec[80]={8'd56,8'd48};
dec[81]={8'd56,8'd49};
dec[82]={8'd56,8'd50};
dec[83]={8'd56,8'd51};
dec[84]={8'd56,8'd52};
dec[85]={8'd56,8'd53};
dec[86]={8'd56,8'd54};
dec[87]={8'd56,8'd55};
dec[88]={8'd56,8'd56};
dec[89]={8'd56,8'd57};
dec[90]={8'd57,8'd48};
dec[91]={8'd57,8'd49};
dec[92]={8'd57,8'd50};
dec[93]={8'd57,8'd51};
dec[94]={8'd57,8'd52};
dec[95]={8'd57,8'd53};
dec[96]={8'd57,8'd54};
dec[97]={8'd57,8'd55};
dec[98]={8'd57,8'd56};
dec[99]={8'd57,8'd57};
end
endmodule
(3)数码管控制模块,此模块通过调用bin_to_bcd模块把从ADC模块上输出的数据转换为bcd码形式,该模块包含: seg_data(输入要显示的数据), input seg_dot(小数点显示标志位), output seg_sel(数码管片选引脚),output reg [7:0] (数码管驱动引脚) ,代码如下
module Seg_led
(
input [3:0] seg_data, //seg_data input
input seg_dot, //segment dot control
output seg_sel, //segment com port
output reg [7:0] seg_led //MSB~LSB = DP,G,F,E,D,C,B,A
);
always@(seg_data)
case(seg_data)
4'h0: seg_led = {seg_dot,7'h3f}; // 0
4'h1: seg_led = {seg_dot,7'h06}; // 1
4'h2: seg_led = {seg_dot,7'h5b}; // 2
4'h3: seg_led = {seg_dot,7'h4f}; // 3
4'h4: seg_led = {seg_dot,7'h66}; // 4
4'h5: seg_led = {seg_dot,7'h6d}; // 5
4'h6: seg_led = {seg_dot,7'h7d}; // 6
4'h7: seg_led = {seg_dot,7'h07}; // 7
4'h8: seg_led = {seg_dot,7'h7f}; // 8
4'h9: seg_led = {seg_dot,7'h6f}; // 9
4'ha: seg_led = {seg_dot,7'h77}; // A
4'hb: seg_led = {seg_dot,7'h7C}; // b
4'hc: seg_led = {seg_dot,7'h39}; // C
4'hd: seg_led = {seg_dot,7'h5e}; // d
4'he: seg_led = {seg_dot,7'h79}; // E
4'hf: seg_led = {seg_dot,7'h71}; // F
default: seg_led = {seg_dot,7'h00};
endcase
assign seg_sel = 1'b0; //锟斤拷锟斤拷锟斤拷锟斤拷使锟斤拷
endmodule
(4)温度传感器模块,该模块采用单总线协议,读取ds18b20温度值,然后通过oled显示,。该模块包含:输入信号clk(为模块提供时钟信号),res_n(低电平复位信号),one_wire (ds18b20引脚控制),data_out(adc转换后电压值暂存寄存器)
module DS18B20Z
(
input clk, // system clock
input rst_n, // system reset, active low
inout one_wire, // ds18b20z one-wire-bus
output reg [15:0] data_out // ds18b20z data_out
);
localparam IDLE = 3'd0;
localparam MAIN = 3'd1;
localparam INIT = 3'd2;
localparam WRITE = 3'd3;
localparam READ = 3'd4;
localparam DELAY = 3'd5;
// generate clk_1mhz clock
reg clk_1mhz;
reg [2:0] cnt_1mhz;
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
cnt_1mhz <= 3'd0;
clk_1mhz <= 1'b0;
end else if(cnt_1mhz >= 3'd5) begin
cnt_1mhz <= 3'd0;
clk_1mhz <= ~clk_1mhz;
end else begin
cnt_1mhz <= cnt_1mhz + 1'b1;
end
end
reg one_wire_buffer;
reg [3:0] cnt_main;
reg [7:0] data_wr;
reg [7:0] data_wr_buffer;
reg [2:0] cnt_init;
reg [19:0] cnt_delay;
reg [19:0] num_delay;
reg [5:0] cnt_write;
reg [5:0] cnt_read;
reg [15:0] temperature;
reg [7:0] temperature_buffer;
reg [2:0] state = IDLE;
reg [2:0] state_back = IDLE;
// always@(posedge clk or negedge rst_n) begin
always@(posedge clk_1mhz or negedge rst_n) begin
if(!rst_n) begin
state <= IDLE;
state_back <= IDLE;
cnt_main <= 4'd0;
cnt_init <= 3'd0;
cnt_write <= 6'd0;
cnt_read <= 6'd0;
cnt_delay <= 20'd0;
one_wire_buffer <= 1'bz;
temperature <= 16'h0;
end else begin
case(state)
IDLE:begin
state <= MAIN;
state_back <= MAIN;
cnt_main <= 4'd0;
cnt_init <= 3'd0;
cnt_write <= 6'd0;
cnt_read <= 6'd0;
cnt_delay <= 20'd0;
one_wire_buffer <= 1'bz;
end
MAIN:begin
if(cnt_main >= 4'd11) cnt_main <= 1'b0;
else cnt_main <= cnt_main + 1'b1;
case(cnt_main)
4'd0: begin state <= INIT; end
4'd1: begin data_wr <= 8'hcc;state <= WRITE; end
4'd2: begin data_wr <= 8'h44;state <= WRITE; end
4'd3: begin num_delay <= 20'd750000;state <= DELAY;state_back <= MAIN; end
4'd4: begin state <= INIT; end
4'd5: begin data_wr <= 8'hcc;state <= WRITE; end
4'd6: begin data_wr <= 8'hbe;state <= WRITE; end
4'd7: begin state <= READ; end
4'd8: begin temperature[7:0] <= temperature_buffer; end
4'd9: begin state <= READ; end
4'd10: begin temperature[15:8] <= temperature_buffer; end
4'd11: begin state <= IDLE;data_out <= temperature; end
default: state <= IDLE;
endcase
end
INIT:begin
if(cnt_init >= 3'd6) cnt_init <= 1'b0;
else cnt_init <= cnt_init + 1'b1;
case(cnt_init)
3'd0: begin one_wire_buffer <= 1'b0; end
3'd1: begin num_delay <= 20'd500;state <= DELAY;state_back <= INIT; end
3'd2: begin one_wire_buffer <= 1'bz; end
3'd3: begin num_delay <= 20'd100;state <= DELAY;state_back <= INIT; end
3'd4: begin if(one_wire) state <= IDLE; else state <= INIT; end
3'd5: begin num_delay <= 20'd400;state <= DELAY;state_back <= INIT; end
3'd6: begin state <= MAIN; end
default: state <= IDLE;
endcase
end
WRITE:begin
if(cnt_write >= 6'd50) cnt_write <= 1'b0;
else cnt_write <= cnt_write + 1'b1;
case(cnt_write)
//lock data_wr
6'd0: begin data_wr_buffer <= data_wr; end
//write bit 0
6'd1: begin one_wire_buffer <= 1'b0; end
6'd2: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd3: begin one_wire_buffer <= data_wr_buffer[0]; end
6'd4: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd5: begin one_wire_buffer <= 1'bz; end
6'd6: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 1
6'd7: begin one_wire_buffer <= 1'b0; end
6'd8: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd9: begin one_wire_buffer <= data_wr_buffer[1]; end
6'd10: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd11: begin one_wire_buffer <= 1'bz; end
6'd12: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 2
6'd13: begin one_wire_buffer <= 1'b0; end
6'd14: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd15: begin one_wire_buffer <= data_wr_buffer[2]; end
6'd16: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd17: begin one_wire_buffer <= 1'bz; end
6'd18: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 3
6'd19: begin one_wire_buffer <= 1'b0; end
6'd20: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd21: begin one_wire_buffer <= data_wr_buffer[3]; end
6'd22: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd23: begin one_wire_buffer <= 1'bz; end
6'd24: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 4
6'd25: begin one_wire_buffer <= 1'b0; end
6'd26: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd27: begin one_wire_buffer <= data_wr_buffer[4]; end
6'd28: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd29: begin one_wire_buffer <= 1'bz; end
6'd30: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 5
6'd31: begin one_wire_buffer <= 1'b0; end
6'd32: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd33: begin one_wire_buffer <= data_wr_buffer[5]; end
6'd34: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd35: begin one_wire_buffer <= 1'bz; end
6'd36: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 6
6'd37: begin one_wire_buffer <= 1'b0; end
6'd38: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd39: begin one_wire_buffer <= data_wr_buffer[6]; end
6'd40: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd41: begin one_wire_buffer <= 1'bz; end
6'd42: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//write bit 7
6'd43: begin one_wire_buffer <= 1'b0; end
6'd44: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
6'd45: begin one_wire_buffer <= data_wr_buffer[7]; end
6'd46: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd47: begin one_wire_buffer <= 1'bz; end
6'd48: begin num_delay <= 20'd2;state <= DELAY;state_back <= WRITE; end
//back to main
6'd49: begin num_delay <= 20'd80;state <= DELAY;state_back <= WRITE; end
6'd50: begin state <= MAIN; end
default: state <= IDLE;
endcase
end
READ:begin
if(cnt_read >= 6'd48) cnt_read <= 1'b0;
else cnt_read <= cnt_read + 1'b1;
case(cnt_read)
//read bit 0
6'd0: begin one_wire_buffer <= 1'b0; end
6'd1: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd2: begin one_wire_buffer <= 1'bz; end
6'd3: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd4: begin temperature_buffer[0] <= one_wire; end
6'd5: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 1
6'd6: begin one_wire_buffer <= 1'b0; end
6'd7: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd8: begin one_wire_buffer <= 1'bz; end
6'd9: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd10: begin temperature_buffer[1] <= one_wire; end
6'd11: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 2
6'd12: begin one_wire_buffer <= 1'b0; end
6'd13: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd14: begin one_wire_buffer <= 1'bz; end
6'd15: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd16: begin temperature_buffer[2] <= one_wire; end
6'd17: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 3
6'd18: begin one_wire_buffer <= 1'b0; end
6'd19: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd20: begin one_wire_buffer <= 1'bz; end
6'd21: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd22: begin temperature_buffer[3] <= one_wire; end
6'd23: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 4
6'd24: begin one_wire_buffer <= 1'b0; end
6'd25: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd26: begin one_wire_buffer <= 1'bz; end
6'd27: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd28: begin temperature_buffer[4] <= one_wire; end
6'd29: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 5
6'd30: begin one_wire_buffer <= 1'b0; end
6'd31: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd32: begin one_wire_buffer <= 1'bz; end
6'd33: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd34: begin temperature_buffer[5] <= one_wire; end
6'd35: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 6
6'd36: begin one_wire_buffer <= 1'b0; end
6'd37: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd38: begin one_wire_buffer <= 1'bz; end
6'd39: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd40: begin temperature_buffer[6] <= one_wire; end
6'd41: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//read bit 7
6'd42: begin one_wire_buffer <= 1'b0; end
6'd43: begin num_delay <= 20'd2;state <= DELAY;state_back <= READ; end
6'd44: begin one_wire_buffer <= 1'bz; end
6'd45: begin num_delay <= 20'd10;state <= DELAY;state_back <= READ; end
6'd46: begin temperature_buffer[7] <= one_wire; end
6'd47: begin num_delay <= 20'd55;state <= DELAY;state_back <= READ; end
//back to main
6'd48: begin state <= MAIN; end
default: state <= IDLE;
endcase
end
DELAY:begin
if(cnt_delay >= num_delay) begin
cnt_delay <= 1'b0;
state <= state_back;
end else cnt_delay <= cnt_delay + 1'b1;
end
endcase
end
end
assign one_wire = one_wire_buffer;
endmodule
5、项目的功能
实现0-3.3V电压测量并通过oled实时显示。
6、遇到的问题
(1)在注册时注册码绑定网卡,由于电脑没有网口.采用usb转以太网模块,当以太网模块没有接入电脑,软件就不能使用。
(2)想完成综合项目,但不太理解dds具体工作原理,项目已完成锁相环倍频功能,查表法,奈何实力不允许,无法继续更多功能。
7、总结与展望
完成项目后有以下感悟:
- 本次比赛参考了不少电子森林优秀作品的程序,感谢电子森林提供的学习环境及机会,感谢电子森林老师的视频知道.
- VHDL和verilog各有优劣,其中verilog语法与c有些许相似之处,个人使用更加方便。但是语言仅仅只是一个工具,尤其在硬件设计里,代码写得漂不漂亮,并不重要,最关键的是设计思想
- 单片机c语言和FPGA编程完全是两种思路, fpga是并行运算,单片机是单线程运行,从大学开始玩单片机,到工作玩单片机,加起来块6年了,还是首次接触fpga,慢慢觉得fpga真的太强大了,仅仅12M主频,但72M的stm32是无法比拟的.
- 展望:在接下来的一段时间继续完善项目,增加新的功能,实现dds功能。