2021寒假在家练项目4——杨彧
2021年寒假在家一起练项目4——一个基于Altera MAX10 FPGA的一个可以完成定时.测温.报警.控制的项目。
标签
FPGA
数字逻辑
显示
网络与通信
无弦琴
更新2021-02-12
1520

项目需求

本项目为基于Altera MAX10 FPGA的一个完成定时、测温、报警、控制的小项目,具体功能如下:

  1. 定时时钟功能:在OLED显示屏上显示时间,时间精确到分钟。并可以通过板载按键对时间进行设置。同时在到达整点时蜂鸣器报警。
  2. 温度计功能:利用板载温度传感器实时监测环境温度并与时间一起显示在OLED屏幕上。
  3. 温度报警功能:在整点报警的同时,将当前温度信息以异步串口通信的方式传输到电脑上,并在电脑上显示温度信息。
  4. 控制蜂鸣器功能:通过uart发送一段音频到板子上,并通过接收到的数据控制蜂鸣器播放。在播放期间OLED上的时间和温度信息暂停更新,在播放后恢复更新。

项目实现过程

FulVfgoWdpeEIp0pE7-1kwH86XVE

图1:顶层设计文件

FvbM5P7g3ihcgMkUjOy1hurqWhXD

图2:FPGA

时钟

项目中不同的模块需要不同频率的时钟,在本项目中,并未用PLL产生时钟,而是采用编写verilog模块计数分频的形式产生不同频率的时钟以满足项目的需要。此处以产生用于uart发送的9600波特的时钟为例:

时钟信号生成代码:

module clk_uart_tx(clk_in,clk_out);//9600Baud
input clk_in;
output clk_out;
reg clk_out;
reg[9:0] times;
initial
    times = 0;
always @(posedge clk_in)
    begin
	 if(times < 625)
	     times = times+1;
	 else
	     begin
		  clk_out = ~clk_out;
		  times = 0;
		  end
	 end
endmodule

定时时钟

定时时钟主要的目标是进行计时和对时间的设置。时间可以通过板载的四个按键进行设置。查阅资料得知,按键抖动时间较长(约为10ms),故没有采用边沿触发的方式,而是选择了定时检测四个按键状态的方式减少按键抖动的影响。该模块有两个输入时钟,低频时钟(周期为500ms)用于检测按键状态,并根据按键状态改变寄存器中保存的时间值;高频时钟(周期为1ms)用于计时,并查看设置的时间是否有更新。同时,当时间到达整点时,输出一个脉冲控制蜂鸣器报警和uart发送温度信息到电脑。

定时时钟相关代码:

module clock(hour_a,hour_d,min_a,min_d,clk_1ms,clk_500ms,hour_out,min_out,t_i_u);
input hour_a,hour_d,min_a,min_d,clk_1ms,clk_500ms;
output[6:0] hour_out,min_out;
output t_i_u;
reg t_i_u;
reg[6:0] hour_out,min_out;
reg[6:0] hour_mem,min_mem,hour_set,min_set;
reg[15:0] second;
initial
    begin
	 hour_mem = 0;
	 hour_set = 0;
	 hour_out = 0;
	 min_mem = 0;
	 min_set = 0;
	 min_out = 0;
	 second = 0;
	 t_i_u = 0;
	 end

always @(posedge clk_500ms)
    begin
	 if(hour_a == 0&&hour_d == 0&&min_a == 0&&min_d == 0)
	     begin
		  hour_set = 0;
		  min_set = 0;
		  end
	 else if(hour_a == 0)
	     begin
		  hour_set = hour_out;
		  min_set = min_out;
	     hour_set = hour_set+1;
		  end
	 else if(hour_d == 0)
	     begin
		  hour_set = hour_out;
		  min_set = min_out;
	     hour_set = hour_set-1;
		  end
	 else if(min_a == 0)
	     begin
		  hour_set = hour_out;
		  min_set = min_out;
	     min_set = min_set+1;
		  end
	 else if(min_d == 0)
	     begin
		  hour_set = hour_out;
		  min_set = min_out;
	     min_set = min_set-1;
		  end
	 if(hour_set == 24)
	     hour_set = 0;
	 if(hour_set > 24)
	     hour_set = 23;
	 if(min_set == 60)
	     min_set = 0;
	 if(min_set > 60)
	     min_set = 59;
	 end
	 
always @(posedge clk_1ms)
    begin
	 if(t_i_u == 1)
	     t_i_u = 0;
	 if(hour_set != hour_mem || min_set != min_mem)
		  begin
        hour_mem = hour_set;
        min_mem = min_set;
        hour_out = hour_set;
        min_out = min_set;
        end
    else
        begin
		  if(second < 60000)
		      second = second+1;
		  else
		      begin
				min_out = min_out+1;
				second = 0;
				if(min_out == 60)
				    begin
					 hour_out = hour_out+1;
					 min_out = 0;
					 t_i_u = 1;
					 if(hour_out == 24)
					     begin
						  hour_out = 0;
						  end
					 end
				end
		  end  
	 end
endmodule

温度计

温度传感器为DS18B20Z芯片。该芯片为单总线通信,对时序要求较严格。项目中通过驱动温度传感器对温度信息进行读取。并对读取到的数据对温度进行转换。该模块使用的时钟频率为1MHz。

获取温度信息相关代码:

module temperature(clk,rst,bus,data_out);
localparam	IDLE	=	3'd0;
localparam	MAIN	=	3'd1;
localparam	INIT	=	3'd2;
localparam	WRITE	=	3'd3;
localparam	READ	=	3'd4;
localparam	DELAY	=	3'd5;
input clk;
input rst;
inout bus;
output[15:0] data_out;
reg[15:0] data_out;
reg bus_output;
reg io_link;

reg[3:0] cnt_main;
reg[7:0] data_wr;
reg[7:0] data_wr_buffer;
reg[2:0] cnt_init;
reg[19:0] cnt_delay,num_delay;
reg[5:0] cnt_write,cnt_read;
reg[15:0] temperature;
reg[7:0] temperature_buffer;
reg[2:0] state,state_back;

initial
    begin
	 state = IDLE;
	 state_back = IDLE;
	 end

assign
    bus = io_link?bus_output:1'bz;
	 
always @(posedge clk or negedge rst)
    begin
	 if(!rst)
	     begin
		  state <= IDLE;
		  state_back <= IDLE;
		  cnt_main <= 4'd0;
		  cnt_init <= 3'd0;
		  cnt_write <= 6'd0;
		  cnt_read <= 6'd0;
		  cnt_delay <= 20'd0;
		  io_link <= 1'b0;
		  temperature <= 16'h0;
		  end
    else
	     begin
		  case(state)
		      IDLE:
				begin
				state <= MAIN;
				state_back <= MAIN;
				cnt_main <= 4'd0;
				cnt_init <= 3'd0;
				cnt_write <= 6'd0;
				cnt_read <= 6'd0;
				cnt_delay <= 20'd0;
				io_link <= 1'b0;
				end
				MAIN:
				begin
				if(cnt_main >= 11)
				    cnt_main <= 0;
				else
				    cnt_main <= cnt_main+1;
				case(cnt_main)
				    4'd0:
					 begin
					 state <= INIT;
					 end
					 4'd1:
					 begin
					 data_wr <= 8'hcc;
					 state <= WRITE;
					 end
					 4'd2:
					 begin
					 data_wr <= 8'h44;
					 state <= WRITE;
					 end
					 4'd3:
					 begin
					 num_delay <= 20'd750000;
					 state <= DELAY;
					 state_back <= MAIN;
					 end
					 4'd4:
					 begin
					 state <= INIT;
					 end
					 4'd5:
					 begin
					 data_wr <= 8'hcc;
					 state <= WRITE;
					 end
					 4'd6:
					 begin
					 data_wr <= 8'hbe;
					 state <= WRITE;
					 end
					 4'd7:
					 begin
					 state <= READ;
					 end
					 4'd8:
					 begin
					 temperature[7:0] <= temperature_buffer;
					 end
					 4'd9:
					 begin
					 state <= READ;
					 end
					 4'd10:
					 begin
					 temperature[15:8] <= temperature_buffer;
					 end
					 4'd11:
			       begin
			       state <= IDLE;
			       data_out <= temperature;
			       end
			       default:
			       state <= IDLE;
            endcase
            end
            INIT:
	         begin
				if(cnt_init >= 3'd6)
				    cnt_init <= 0;
				else
				    cnt_init <= cnt_init+1;
				case(cnt_init)
				    3'd0:
					 begin
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 3'd1:
					 begin
					 num_delay <= 20'd500;
					 state <= DELAY;
					 state_back <= INIT;
					 end
					 3'd2: 
					 begin 
					 io_link = 0; 
					 end
					 3'd3: 
					 begin 
					 num_delay <= 20'd100;
					 state <= DELAY;
					 state_back <= INIT; 
					 end
					 3'd4: 
					 begin 
					 if(bus) 
					     state <= IDLE; 
					 else 
					     state <= INIT; 
					 end
					 3'd5: 
					 begin 
					 num_delay <= 20'd400;
					 state <= DELAY;
					 state_back <= INIT; 
					 end
					 3'd6: 
					 begin 
					 state <= MAIN; 
					 end
					 default: 
					 state <= IDLE;
				endcase
				end
				WRITE:
				begin
				if(cnt_write >= 6'd50) 
				    cnt_write <= 1'b0;
				else 
				    cnt_write <= cnt_write + 1'b1;
				case(cnt_write)
				    6'd0: 
					 begin 
					 data_wr_buffer <= data_wr; 
					 end
					 //bit0
					 6'd1: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd2: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd3: 
					 begin 
					 bus_output <= data_wr_buffer[0]; 
					 end
					 6'd4: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd5: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd6:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //bit1
					 6'd7: 
					 begin
                io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd8:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd9:
					 begin
					 bus_output <= data_wr_buffer[1]; 
					 end
					 6'd10: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd11: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd12: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //bit2
					 6'd13: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd14: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd15: 
					 begin 
					 bus_output <= data_wr_buffer[2]; 
					 end
					 6'd16: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd17: 
					 begin 
					 io_link  <= 0; 
					 end
					 6'd18:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //bit3
					 6'd19: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd20: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd21: 
					 begin 
					 bus_output <= data_wr_buffer[3];
					 end
					 6'd22:
					 begin
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd23:
					 begin 
					 io_link  <= 0; 
					 end
					 6'd24: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 //bit4
					 6'd25: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd26:
					 begin num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd27: 
					 begin
					 bus_output <= data_wr_buffer[4];
					 end
					 6'd28:
					 begin
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd29:
					 begin
					 io_link <= 0;
					 end
					 6'd30:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //bit5
					 6'd31: 
					 begin
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd32: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd33: 
					 begin 
					 bus_output <= data_wr_buffer[5]; 
					 end
					 6'd34: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd35: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd36:
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 //bit6
					 6'd37: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd38:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd39:
					 begin 
					 bus_output <= data_wr_buffer[6]; 
					 end
					 6'd40: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd41: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd42:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //bit7
					 6'd43: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd44:
					 begin num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 6'd45:
					 begin
					 bus_output <= data_wr_buffer[7];
					 end
					 6'd46:
					 begin
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd47:
					 begin
					 io_link  <= 0;
					 end
					 6'd48:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= WRITE;
					 end
					 //
					 6'd49: 
					 begin 
					 num_delay <= 20'd80;
					 state <= DELAY;
					 state_back <= WRITE; 
					 end
					 6'd50:
					 begin state <= MAIN;
					 end
					 default:
					 state = IDLE;
            endcase
				end
				READ:
				begin
				if(cnt_read >= 6'd48) 
				    cnt_read <= 1'b0;
				else 
				    cnt_read <= cnt_read + 1'b1;
				case(cnt_read)
				    //read bit 0
					 6'd0:
					 begin
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd1:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 6'd2: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd3: 
					 begin 
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd4: 
					 begin 
					 temperature_buffer[0] <= bus; 
					 end
					 6'd5:
					 begin num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 //read bit 1
					 6'd6: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd7: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ; 
					 end
				 	 6'd8: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd9: 
					 begin 
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd10: 
					 begin 
					 temperature_buffer[1] <= bus; 
					 end
					 6'd11: 
					 begin 
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 //read bit 2
					 6'd12: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0; 
					 end
					 6'd13: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd14: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd15: 
					 begin 
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd16: 
					 begin 
					 temperature_buffer[2] <= bus; 
					 end
					 6'd17: 
					 begin num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 //read bit 3
					 6'd18: 
					 begin 
					 io_link <= 1;
					 bus_output <= 0;  
					 end
					 6'd19: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd20: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd21: 
					 begin 
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd22: 
					 begin 
					 temperature_buffer[3] <= bus; 
					 end
					 6'd23: 
					 begin 
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 //read bit 4
					 6'd24:
					 begin
					 io_link <= 1;
					 bus_output <= 0;   
					 end
					 6'd25:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd26:
					 begin
					 io_link <= 0; 
					 end
					 6'd27:
					 begin
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd28:
					 begin
					 temperature_buffer[4] <= bus; 
					 end
					 6'd29:
					 begin
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 //read bit 5
					 6'd30:
					 begin
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd31:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 6'd32:
					 begin
					 io_link <= 0;
					 end
					 6'd33:
					 begin
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 6'd34:
					 begin
					 temperature_buffer[5] <= bus; 
					 end
					 6'd35:
					 begin
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 //read bit 6
					 6'd36:
					 begin
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd37: 
					 begin 
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd38: 
					 begin 
					 io_link <= 0; 
					 end
					 6'd39: 
					 begin 
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 6'd40: 
					 begin 
					 temperature_buffer[6] <= bus; 
					 end
					 6'd41: 
					 begin 
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ; 
					 end
					 //read bit 7
					 6'd42:
					 begin
					 io_link <= 1;
					 bus_output <= 0;
					 end
					 6'd43:
					 begin
					 num_delay <= 20'd2;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 6'd44:
					 begin
					 io_link <= 1;
					 end
					 6'd45:
					 begin
					 num_delay <= 20'd10;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 6'd46:
					 begin
					 temperature_buffer[7] <= bus; 
					 end
					 6'd47: 
					 begin 
					 num_delay <= 20'd55;
					 state <= DELAY;
					 state_back <= READ;
					 end
					 //back to main
					 6'd48:
					 begin
					 state <= MAIN;
					 end
					 default:
					 state <= IDLE;
            endcase
				end
				DELAY:
				begin
				if(cnt_delay >= num_delay) 
				    begin
					 cnt_delay <= 1'b0;
					 state <= state_back; 
					 end
				else
				    cnt_delay <= cnt_delay + 1'b1;
				end
        endcase
		  end
    end
endmodule

蜂鸣器

板载蜂鸣器为无源蜂鸣器,通过PWM信号驱动使蜂鸣器发声。通过改变PWM信号分频计数终止控制PWM信号的频率,从而达到改变蜂鸣器发声频率的目的。在整点报时时,通过预设的一段数据控制蜂鸣器发出“1234567”的声音,在接收到pc端传来的数据时,根据接收到的数据控制蜂鸣器的音高。项目中选用了《葫芦娃》主题曲的一部分。

驱动蜂鸣器相关代码:

module buzzer(tri_time,tri_uart,data_uart,clk,clk_buzzer,stop,out);
input tri_time,tri_uart,clk,clk_buzzer;
input[231:0] data_uart;
output stop,out;
localparam size = 29;
localparam IDLE = 2'b00;
localparam LOAD_1 = 2'b01;
localparam LOAD_2 = 2'b10;
localparam MAIN = 2'b11;
reg stop,out;
reg[3:0] tone;
reg[5:0] num;
reg[15:0] time_end;
reg[17:0] time_cnt;
reg[size*8-1:0] music;
reg[1:0] state;
reg flag_1,flag_2;
reg[2:0] judge;
reg[23:0] num_delay;
initial
    begin
	 stop = 1;
	 music = 0;
	 flag_1 = 0;
	 flag_2 = 0;
	 num = size-1;
	 time_cnt = 0;
	 state = 2'b00;
	 end
always @(posedge clk_buzzer)
    begin
	 case(state)
	     IDLE:
		  begin
		  music = 0;
		  case(judge)
		      2'b01:state = LOAD_1;
				2'b10:state = LOAD_2;
				default:state = IDLE;
		  endcase
		  end
	     LOAD_1:
		  begin
		  music = 120'h080809090a0a0b0b0c0c0d0d0e0e00;
		  num = 14;
		  state = MAIN;
		  end
		  LOAD_2:
		  begin
		  music = data_uart;
		  num = 28;
		  state = MAIN;
		  stop = 0;
		  end
		  MAIN:
		  begin
		  
	     if(num == 0)
		      begin
	         num <= 0;
				state <= IDLE;
				stop <= 1; 
				end
		  else
		      begin
		      tone <= music[num*8+:8];
	         num <= num - 1;
				end
		  end
		  default:state = IDLE;
    endcase
	 end
always @(posedge clk)
    begin
	 case(tone)
	     5'd1:	time_end =	16'd22935;	//L1,01
		  5'd2:	time_end =	16'd20428;	//L2,02
		  5'd3:	time_end =	16'd18203;	//L3,03
		  5'd4:	time_end =	16'd17181;	//L4,04
		  5'd5:	time_end =	16'd15305;	//L5,05
		  5'd6:	time_end =	16'd13635;	//L6,06
		  5'd7:	time_end =	16'd12147;	//L7,07
		  5'd8:	time_end =	16'd11464;	//M1,08
		  5'd9:	time_end =	16'd10215;	//M2,09
		  5'd10:	time_end =	16'd9100;	//M3,0a
		  5'd11:	time_end =	16'd8589;	//M4,0b
		  5'd12:	time_end =	16'd7652;	//M5,0c
		  5'd13:	time_end =	16'd6817;	//M6,0d
		  5'd14:	time_end =	16'd6073;	//M7,0e
		  5'd15:	time_end =	16'd5740;	//H1,0f
		  5'd16:	time_end =	16'd5107;	//H2,11
		  5'd17:	time_end =	16'd4549;	//H3,12
		  5'd18:	time_end =	16'd4294;	//H4,13
		  5'd19:	time_end =	16'd3825;	//H5,14
		  5'd20:	time_end =	16'd3408;	//H6,15
		  5'd21:	time_end =	16'd3036;	//H7,16
		  default: time_end = 16'd0;
	 endcase
	 if(time_end == 0||num == 0)
	     out <= 0;
	 else if(time_cnt >= time_end)
	     begin
		  out <= ~out;
		  time_cnt <= 0;
		  end
	 else
	     time_cnt <= time_cnt + 1;
	 end
always @(posedge clk)
    begin
	 if(num_delay != 0)
	     begin
		  num_delay = num_delay - 1;
		  end
	 else
	     begin
		  judge[0] = tri_time;
		  judge[1] = tri_uart;
		  if(judge != 0)
		      num_delay = 7000000;
		  else
		      num_delay = 0;
		  end
    end
endmodule
		  

OLED显示屏

OLED显示屏用于显示时间和温度信息。该模块不断读取输入的时间和温度信息。通过读取对应的字模并显示到屏幕上。在收到uart数据时,OLED显示屏处于空闲状态,停止对时间、温度的刷新。在播放完毕后OLED数据继续刷新。

驱动OLED相关代码:

module OLED(clk,rst,hour_0,hour_1,min_0,min_1,tem_0,tem_1,tem_sign,oled_csn,oled_rst,oled_dcn,oled_clk,oled_dat);
input clk,rst,tem_sign;
input[7:0] hour_1,hour_0,min_1,min_0,tem_1,tem_0;
output oled_csn,oled_rst,oled_dcn,oled_clk,oled_dat;
reg oled_csn,oled_rst,oled_dcn,oled_clk,oled_dat;

localparam INIT_DEPTH = 16'd25; //LCD初始化的命令的数量
localparam IDLE = 6'h1, MAIN = 6'h2, INIT = 6'h4, SCAN = 6'h8, WRITE = 6'h10, DELAY = 6'h20;
localparam HIGH = 1'b1, LOW = 1'b0;
localparam DATA = 1'b1, CMD = 1'b0;
localparam time_long = 5;//time:
localparam temp_long = 12;//temperature:

reg[7:0] cmd[24:0];
reg[39:0] mem[123:0];
reg[7:0]	y_p,x_ph,x_pl;
reg[(8*21-1):0] char;
reg[7:0]	num,char_reg;				//
reg[4:0]	cnt_main,cnt_init,cnt_scan,cnt_write;
reg[15:0] num_delay,cnt_delay,cnt;
reg[5:0] state,state_back;
reg[39:0] time_head;
reg[95:0] temp_head;
wire[7:0] sign;

assign sign = tem_sign?" ":"+";

always @(posedge clk or negedge rst)
    begin
	 if(!rst)
	     begin
		  cnt_main <= 1'b0; 
		  cnt_init <= 1'b0; 
		  cnt_scan <= 1'b0; 
		  cnt_write <= 1'b0;
		  y_p <= 1'b0; 
		  x_ph <= 1'b0; 
		  x_pl <= 1'b0;
		  num <= 1'b0; 
		  char <= 1'b0; 
		  char_reg <= 1'b0;
		  num_delay <= 16'd5; 
		  cnt_delay <= 1'b0; 
		  cnt <= 1'b0;
		  oled_csn <= HIGH; 
		  oled_rst <= HIGH; 
		  oled_dcn <= CMD; 
		  oled_clk <= HIGH; 
		  oled_dat <= LOW;
		  state <= IDLE; 
		  state_back <= IDLE;
		  end
    else
	     begin
		  case(state)
		      IDLE:
				begin
				cnt_main <= 1'b0; 
				cnt_init <= 1'b0; 
				cnt_scan <= 1'b0; 
				cnt_write <= 1'b0;
				y_p <= 1'b0; 
				x_ph <= 1'b0; 
				x_pl <= 1'b0;
				num <= 1'b0; 
				char <= 1'b0; 
				char_reg <= 1'b0;
				num_delay <= 16'd5; 
				cnt_delay <= 1'b0; 
				cnt <= 1'b0;
				oled_csn <= HIGH; 
				oled_rst <= HIGH; 
				oled_dcn <= CMD; 
				oled_clk <= HIGH; 
				oled_dat <= LOW;
				state <= MAIN; 
				state_back <= MAIN;
				end
				MAIN:
				begin
				if(cnt_main >= 2)
				    cnt_main <= 1;
				else
				    cnt_main <= cnt_main+1;
				case(cnt_main)
				    5'd0:begin state <= INIT; end
					 5'd1:
					 begin
					 y_p <= 8'hb0;
					 x_ph <= 8'h10;
					 x_pl <= 8'h00;
					 num <= 5'd11;
					 char <= {time_head,hour_1,hour_0,":",min_1,min_0," "};
					 state <= SCAN;
					 end
					 5'd2:
					 begin
					 y_p <= 8'hb1;
					 x_ph <= 8'h10;
					 x_pl <= 8'h00;
					 num <= 5'd11;
					 char <= {temp_head,sign,tem_1,tem_0,8'h7b,"C"," "};
					 state <= SCAN;
					 end
					 default: state <= IDLE;
				endcase
				end
				INIT:
				begin	//初始化状态
				case(cnt_init)
				    5'd0:   begin oled_rst <= LOW; cnt_init <= cnt_init + 1'b1; end	//复位有效
					 5'd1:   begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end	//延时大于3us
					 5'd2:   begin oled_rst <= HIGH; cnt_init <= cnt_init + 1'b1; end	//复位恢复
					 5'd3:   begin num_delay <= 16'd25000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end	//延时大于220us
					 5'd4:   begin 
								if(cnt>=INIT_DEPTH) 
								    begin	//当25条指令及数据发出后,配置完成
								    cnt <= 1'b0;
								    cnt_init <= cnt_init + 1'b1;
									 end 
								else 
								    begin	
									 cnt <= cnt + 1'b1; 
									 num_delay <= 16'd5;
									 oled_dcn <= CMD; 
									 char_reg <= cmd[cnt]; 
									 state <= WRITE; 
									 state_back <= INIT;
									 end
								end
                5'd5:	begin cnt_init <= 1'b0; state <= MAIN; end	//初始化完成,返回MAIN状态
					 default: state <= IDLE;
            endcase
				end
				SCAN:
				begin	//刷屏状态,从RAM中读取数据刷屏
				if(cnt_scan == 5'd11) 
				    begin
					 if(num) 
					     cnt_scan <= 5'd3;
					 else 
					     cnt_scan <= cnt_scan + 1'b1;
					 end 
				else if(cnt_scan == 5'd12) 
				    cnt_scan <= 1'b0;
				else 
				    cnt_scan <= cnt_scan + 1'b1;
				case(cnt_scan)
				    5'd 0:	begin oled_dcn <= CMD; char_reg <= y_p; state <= WRITE; state_back <= SCAN; end		//定位列页地址
					 5'd 1:	begin oled_dcn <= CMD; char_reg <= x_pl; state <= WRITE; state_back <= SCAN; end	//定位行地址低位
					 5'd 2:	begin oled_dcn <= CMD; char_reg <= x_ph; state <= WRITE; state_back <= SCAN; end	//定位行地址高位
							
					 5'd 3:	begin num <= num - 1'b1;end
					 5'd 4:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
					 5'd 5:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
					 5'd 6:	begin oled_dcn <= DATA; char_reg <= 8'h00; state <= WRITE; state_back <= SCAN; end	//将5*8点阵编程8*8
					 5'd 7:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][39:32]; state <= WRITE; state_back <= SCAN; end
					 5'd 8:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][31:24]; state <= WRITE; state_back <= SCAN; end
					 5'd 9:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][23:16]; state <= WRITE; state_back <= SCAN; end
					 5'd10:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][15: 8]; state <= WRITE; state_back <= SCAN; end
					 5'd11:	begin oled_dcn <= DATA; char_reg <= mem[char[(num*8)+:8]][ 7: 0]; state <= WRITE; state_back <= SCAN; end
					 5'd12:	begin state <= MAIN; end
					 default: state <= IDLE;
				endcase
			   end
				WRITE:
				begin	//WRITE状态,将数据按照SPI时序发送给屏幕
				if(cnt_write >= 5'd17) 
				    cnt_write <= 1'b0;
				else 
				    cnt_write <= cnt_write + 1'b1;
				case(cnt_write)
				    5'd 0:	begin oled_csn <= LOW; end	//9位数据最高位为命令数据控制位
					 5'd 1:	begin oled_clk <= LOW; oled_dat <= char_reg[7]; end	//先发高位数据
					 5'd 2:	begin oled_clk <= HIGH; end
					 5'd 3:	begin oled_clk <= LOW; oled_dat <= char_reg[6]; end
					 5'd 4:	begin oled_clk <= HIGH; end
					 5'd 5:	begin oled_clk <= LOW; oled_dat <= char_reg[5]; end
					 5'd 6:	begin oled_clk <= HIGH; end
					 5'd 7:	begin oled_clk <= LOW; oled_dat <= char_reg[4]; end
					 5'd 8:	begin oled_clk <= HIGH; end
					 5'd 9:	begin oled_clk <= LOW; oled_dat <= char_reg[3]; end
					 5'd10:	begin oled_clk <= HIGH; end
					 5'd11:	begin oled_clk <= LOW; oled_dat <= char_reg[2]; end
					 5'd12:	begin oled_clk <= HIGH; end
					 5'd13:	begin oled_clk <= LOW; oled_dat <= char_reg[1]; end
					 5'd14:	begin oled_clk <= HIGH; end
					 5'd15:	begin oled_clk <= LOW; oled_dat <= char_reg[0]; end	//后发低位数据
					 5'd16:	begin oled_clk <= HIGH; end
					 5'd17:	begin oled_csn <= HIGH; state <= DELAY; end	//
					 default: state <= IDLE;
				endcase
				end
				DELAY:
				begin	//延时状态
				if(cnt_delay >= num_delay) 
				    begin
					 cnt_delay <= 16'd0; 
					 state <= state_back; 
					 end 
				else 
				    cnt_delay <= cnt_delay + 1'b1;
				end
				default:state <= IDLE;
        endcase
		  end
    end

initial
    begin
	 time_head = "TIME:";
	 temp_head = "TEMP:";
	 cnt_main = 1'b0; 
	 cnt_init = 1'b0; 
	 cnt_scan = 1'b0; 
	 cnt_write = 1'b0;
	 y_p = 1'b0; 
	 x_ph = 1'b0; 
	 x_pl = 1'b0;
	 num = 1'b0; 
	 char = 1'b0; 
	 char_reg = 1'b0;
	 num_delay = 16'd5; 
	 cnt_delay = 1'b0; 
	 cnt = 1'b0;
	 oled_csn <= HIGH; 
	 oled_rst <= HIGH; 
	 oled_dcn <= CMD; 
	 oled_clk <= HIGH; 
	 oled_dat <= LOW;
	 state <= IDLE; 
	 state_back <= IDLE;
	 cmd[ 0] = {8'hae}; 
	 cmd[ 1] = {8'h00}; 
	 cmd[ 2] = {8'h10}; 
	 cmd[ 3] = {8'h00}; 
	 cmd[ 4] = {8'hb0}; 
	 cmd[ 5] = {8'h81}; 
	 cmd[ 6] = {8'hff}; 
	 cmd[ 7] = {8'ha1}; 
	 cmd[ 8] = {8'ha6}; 
	 cmd[ 9] = {8'ha8}; 
	 cmd[10] = {8'h1f}; 
	 cmd[11] = {8'hc8};
	 cmd[12] = {8'hd3};
	 cmd[13] = {8'h00};
	 cmd[14] = {8'hd5};
	 cmd[15] = {8'h80};
	 cmd[16] = {8'hd9};
	 cmd[17] = {8'h1f};
	 cmd[18] = {8'hda};
	 cmd[19] = {8'h00};
	 cmd[20] = {8'hdb};
	 cmd[21] = {8'h40};
	 cmd[22] = {8'h8d};
	 cmd[23] = {8'h14};
	 cmd[24] = {8'haf};
	 
	 mem[  0] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E};   // 48  0
	 mem[  1] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00};   // 49  1
	 mem[  2] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46};   // 50  2
	 mem[  3] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31};   // 51  3
	 mem[  4] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10};   // 52  4
	 mem[  5] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39};   // 53  5
	 mem[  6] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30};   // 54  6
	 mem[  7] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03};   // 55  7
	 mem[  8] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36};   // 56  8
	 mem[  9] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E};   // 57  9
	 mem[ 10] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C};   // 65  A
	 mem[ 11] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36};   // 66  B
	 mem[ 12] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22};   // 67  C
	 mem[ 13] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C};   // 68  D
	 mem[ 14] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41};   // 69  E
	 mem[ 15] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01};   // 70  F

	 mem[ 32] = {8'h00, 8'h00, 8'h00, 8'h00, 8'h00};   // 32  sp 
	 mem[ 33] = {8'h00, 8'h00, 8'h2f, 8'h00, 8'h00};   // 33  !  
	 mem[ 34] = {8'h00, 8'h07, 8'h00, 8'h07, 8'h00};   // 34  
	 mem[ 35] = {8'h14, 8'h7f, 8'h14, 8'h7f, 8'h14};   // 35  #
	 mem[ 36] = {8'h24, 8'h2a, 8'h7f, 8'h2a, 8'h12};   // 36  $
	 mem[ 37] = {8'h62, 8'h64, 8'h08, 8'h13, 8'h23};   // 37  %
	 mem[ 38] = {8'h36, 8'h49, 8'h55, 8'h22, 8'h50};   // 38  &
	 mem[ 39] = {8'h00, 8'h05, 8'h03, 8'h00, 8'h00};   // 39  '
	 mem[ 40] = {8'h00, 8'h1c, 8'h22, 8'h41, 8'h00};   // 40  (
	 mem[ 41] = {8'h00, 8'h41, 8'h22, 8'h1c, 8'h00};   // 41  )
	 mem[ 42] = {8'h14, 8'h08, 8'h3E, 8'h08, 8'h14};   // 42  *
	 mem[ 43] = {8'h08, 8'h08, 8'h3E, 8'h08, 8'h08};   // 43  +
	 mem[ 44] = {8'h00, 8'h00, 8'hA0, 8'h60, 8'h00};   // 44  ,
	 mem[ 45] = {8'h08, 8'h08, 8'h08, 8'h08, 8'h08};   // 45  -
	 mem[ 46] = {8'h00, 8'h60, 8'h60, 8'h00, 8'h00};   // 46  .
	 mem[ 47] = {8'h20, 8'h10, 8'h08, 8'h04, 8'h02};   // 47  /
	 mem[ 48] = {8'h3E, 8'h51, 8'h49, 8'h45, 8'h3E};   // 48  0
	 mem[ 49] = {8'h00, 8'h42, 8'h7F, 8'h40, 8'h00};   // 49  1
	 mem[ 50] = {8'h42, 8'h61, 8'h51, 8'h49, 8'h46};   // 50  2
	 mem[ 51] = {8'h21, 8'h41, 8'h45, 8'h4B, 8'h31};   // 51  3
	 mem[ 52] = {8'h18, 8'h14, 8'h12, 8'h7F, 8'h10};   // 52  4
	 mem[ 53] = {8'h27, 8'h45, 8'h45, 8'h45, 8'h39};   // 53  5
	 mem[ 54] = {8'h3C, 8'h4A, 8'h49, 8'h49, 8'h30};   // 54  6
	 mem[ 55] = {8'h01, 8'h71, 8'h09, 8'h05, 8'h03};   // 55  7
	 mem[ 56] = {8'h36, 8'h49, 8'h49, 8'h49, 8'h36};   // 56  8
	 mem[ 57] = {8'h06, 8'h49, 8'h49, 8'h29, 8'h1E};   // 57  9
	 mem[ 58] = {8'h00, 8'h36, 8'h36, 8'h00, 8'h00};   // 58  :
	 mem[ 59] = {8'h00, 8'h56, 8'h36, 8'h00, 8'h00};   // 59  ;
	 mem[ 60] = {8'h08, 8'h14, 8'h22, 8'h41, 8'h00};   // 60  <
	 mem[ 61] = {8'h14, 8'h14, 8'h14, 8'h14, 8'h14};   // 61  =
	 mem[ 62] = {8'h00, 8'h41, 8'h22, 8'h14, 8'h08};   // 62  >
	 mem[ 63] = {8'h02, 8'h01, 8'h51, 8'h09, 8'h06};   // 63  ?
	 mem[ 64] = {8'h32, 8'h49, 8'h59, 8'h51, 8'h3E};   // 64  @
	 mem[ 65] = {8'h7C, 8'h12, 8'h11, 8'h12, 8'h7C};   // 65  A
	 mem[ 66] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h36};   // 66  B
	 mem[ 67] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h22};   // 67  C
	 mem[ 68] = {8'h7F, 8'h41, 8'h41, 8'h22, 8'h1C};   // 68  D
	 mem[ 69] = {8'h7F, 8'h49, 8'h49, 8'h49, 8'h41};   // 69  E
	 mem[ 70] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h01};   // 70  F
	 mem[ 71] = {8'h3E, 8'h41, 8'h49, 8'h49, 8'h7A};   // 71  G
	 mem[ 72] = {8'h7F, 8'h08, 8'h08, 8'h08, 8'h7F};   // 72  H
	 mem[ 73] = {8'h00, 8'h41, 8'h7F, 8'h41, 8'h00};   // 73  I
	 mem[ 74] = {8'h20, 8'h40, 8'h41, 8'h3F, 8'h01};   // 74  J
	 mem[ 75] = {8'h7F, 8'h08, 8'h14, 8'h22, 8'h41};   // 75  K
	 mem[ 76] = {8'h7F, 8'h40, 8'h40, 8'h40, 8'h40};   // 76  L
	 mem[ 77] = {8'h7F, 8'h02, 8'h0C, 8'h02, 8'h7F};   // 77  M
	 mem[ 78] = {8'h7F, 8'h04, 8'h08, 8'h10, 8'h7F};   // 78  N
	 mem[ 79] = {8'h3E, 8'h41, 8'h41, 8'h41, 8'h3E};   // 79  O
	 mem[ 80] = {8'h7F, 8'h09, 8'h09, 8'h09, 8'h06};   // 80  P
	 mem[ 81] = {8'h3E, 8'h41, 8'h51, 8'h21, 8'h5E};   // 81  Q
	 mem[ 82] = {8'h7F, 8'h09, 8'h19, 8'h29, 8'h46};   // 82  R
	 mem[ 83] = {8'h46, 8'h49, 8'h49, 8'h49, 8'h31};   // 83  S
	 mem[ 84] = {8'h01, 8'h01, 8'h7F, 8'h01, 8'h01};   // 84  T
	 mem[ 85] = {8'h3F, 8'h40, 8'h40, 8'h40, 8'h3F};   // 85  U
	 mem[ 86] = {8'h1F, 8'h20, 8'h40, 8'h20, 8'h1F};   // 86  V
	 mem[ 87] = {8'h3F, 8'h40, 8'h38, 8'h40, 8'h3F};   // 87  W
	 mem[ 88] = {8'h63, 8'h14, 8'h08, 8'h14, 8'h63};   // 88  X
	 mem[ 89] = {8'h07, 8'h08, 8'h70, 8'h08, 8'h07};   // 89  Y
	 mem[ 90] = {8'h61, 8'h51, 8'h49, 8'h45, 8'h43};   // 90  Z
	 mem[ 91] = {8'h00, 8'h7F, 8'h41, 8'h41, 8'h00};   // 91  [
	 mem[ 92] = {8'h55, 8'h2A, 8'h55, 8'h2A, 8'h55};   // 92  .
	 mem[ 93] = {8'h00, 8'h41, 8'h41, 8'h7F, 8'h00};   // 93  ]
	 mem[ 94] = {8'h04, 8'h02, 8'h01, 8'h02, 8'h04};   // 94  ^
	 mem[ 95] = {8'h40, 8'h40, 8'h40, 8'h40, 8'h40};   // 95  _
	 mem[ 96] = {8'h00, 8'h01, 8'h02, 8'h04, 8'h00};   // 96  '
	 mem[ 97] = {8'h20, 8'h54, 8'h54, 8'h54, 8'h78};   // 97  a
	 mem[ 98] = {8'h7F, 8'h48, 8'h44, 8'h44, 8'h38};   // 98  b
	 mem[ 99] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h20};   // 99  c
	 mem[100] = {8'h38, 8'h44, 8'h44, 8'h48, 8'h7F};   // 100 d
	 mem[101] = {8'h38, 8'h54, 8'h54, 8'h54, 8'h18};   // 101 e
	 mem[102] = {8'h08, 8'h7E, 8'h09, 8'h01, 8'h02};   // 102 f
	 mem[103] = {8'h18, 8'hA4, 8'hA4, 8'hA4, 8'h7C};   // 103 g
	 mem[104] = {8'h7F, 8'h08, 8'h04, 8'h04, 8'h78};   // 104 h
	 mem[105] = {8'h00, 8'h44, 8'h7D, 8'h40, 8'h00};   // 105 i
	 mem[106] = {8'h40, 8'h80, 8'h84, 8'h7D, 8'h00};   // 106 j
	 mem[107] = {8'h7F, 8'h10, 8'h28, 8'h44, 8'h00};   // 107 k
	 mem[108] = {8'h00, 8'h41, 8'h7F, 8'h40, 8'h00};   // 108 l
	 mem[109] = {8'h7C, 8'h04, 8'h18, 8'h04, 8'h78};   // 109 m
	 mem[110] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h78};   // 110 n
	 mem[111] = {8'h38, 8'h44, 8'h44, 8'h44, 8'h38};   // 111 o
	 mem[112] = {8'hFC, 8'h24, 8'h24, 8'h24, 8'h18};   // 112 p
	 mem[113] = {8'h18, 8'h24, 8'h24, 8'h18, 8'hFC};   // 113 q
	 mem[114] = {8'h7C, 8'h08, 8'h04, 8'h04, 8'h08};   // 114 r
	 mem[115] = {8'h48, 8'h54, 8'h54, 8'h54, 8'h20};   // 115 s
	 mem[116] = {8'h04, 8'h3F, 8'h44, 8'h40, 8'h20};   // 116 t
	 mem[117] = {8'h3C, 8'h40, 8'h40, 8'h20, 8'h7C};   // 117 u
	 mem[118] = {8'h1C, 8'h20, 8'h40, 8'h20, 8'h1C};   // 118 v
	 mem[119] = {8'h3C, 8'h40, 8'h30, 8'h40, 8'h3C};   // 119 w
	 mem[120] = {8'h44, 8'h28, 8'h10, 8'h28, 8'h44};   // 120 x
	 mem[121] = {8'h1C, 8'hA0, 8'hA0, 8'hA0, 8'h7C};   // 121 y
	 mem[122] = {8'h44, 8'h64, 8'h54, 8'h4C, 8'h44};   // 122 z
	 mem[123] = {8'h00, 8'h00, 8'h00, 8'h03, 8'h03};   // 123 
	 end
endmodule

串口通信

串口通信的通信协议为:1位起始位“0”,8位数据位,长度不固定的停止位“1”。串口通信速率为9600波特。

发送:发送时需发送“XX°C”几个字符,将这几个字符及起始位、终止位存入寄存器中,依次发出。发送时钟为9600Hz。

接收:接收时采用12MHz时钟,通过对连续1250个周期时接收到的值进行判断这一比特对应的数据,减少因噪声而产生的误码概率。在接收到足够的数据后,触发蜂鸣器播放音乐。

串口通信发送代码:

module uart_tx(tem_0,tem_1,clk,en,uart_out);
localparam IDLE = 2'b0;
localparam SEND = 2'b1;
input[7:0] tem_0,tem_1;
input clk,en;
output uart_out;
reg uart_out,flag_1,flag_2,state;
reg[51:0] uart_data;
reg[7:0] tab[9:0];
reg[5:0] i;

initial
    begin
	 tab[0] = 8'h30;
	 tab[1] = 8'h31;
	 tab[2] = 8'h32;
	 tab[3] = 8'h33;
	 tab[4] = 8'h34;
	 tab[5] = 8'h35;
	 tab[6] = 8'h36;
	 tab[7] = 8'h37;
	 tab[8] = 8'h38;
	 tab[9] = 8'h39;
	 uart_data = 1;
	 flag_1 = 0;
	 flag_2 = 0;
	 i = 0;
	 state = IDLE;
	 end
always @(posedge en)
    begin
	 uart_data = {1'd1,8'h43,1'd0,1'd1,8'he3,1'd0,1'd1,8'ha1,1'd0,1'd1,tab[tem_0],1'd0,1'd1,tab[tem_1],1'd0,1'd1,1'd1};
	 flag_1 = ~flag_1;
	 end
always @(posedge clk)
    begin
	 case(state)
	     IDLE:
	     if(flag_2 != flag_1)
		      begin
				flag_2 = flag_1;
				state = SEND;
				end
		  SEND:
		  if(i < 52)
		      begin
				uart_out = uart_data[i];
				i = i+1;
				end
		  else
		      begin
				i = 0;
				state = IDLE;
				end
    endcase
	 end
endmodule

串口通信接收代码:

module uart_rx(uart_in,clk,receive,tri_uart);
localparam IDLE = 2'b00;
localparam CHEC = 2'b01;
localparam RECE = 2'b11;
localparam TIMES = 1250;
input uart_in,clk;
output tri_uart;
output[231:0] receive;
reg[231:0] receive;
reg[1:0] state;
reg[10:0] times,times_zero;
reg[3:0] num;
reg[5:0] B;
reg tri_uart;
initial
    begin
    times = 0;
	 times_zero = 0;
	 state = 0;
	 num = 0;
	 B = 0;
	 receive = 0;
	 end
always @(posedge clk)
    begin
	 if(tri_uart == 1)
	     tri_uart = 0;
	 case(state)
	     IDLE:
		  begin
		  if(uart_in == 0)
				state = CHEC;
		  end
		  CHEC:
		  begin
		  if(uart_in == 0)
		      times_zero = times_zero+1;
		  times = times+1;
		  if(times >= TIMES)
		      begin
				if(times_zero >= (TIMES>>1))
				    begin
					 state = RECE;
					 times = 0;
					 times_zero = 0;
					 end
			   else
				    begin
					 state = IDLE ;
					 times = 0;
					 times_zero = 0;
					 end
				end
        end
		  RECE:
		  begin
		  times = times+1;
		  if(uart_in == 0)
		      begin
				times_zero = times_zero+1;
				end
		  if(times >= TIMES)
		      begin
				if(times_zero >= (TIMES>>1))
				    begin
					 receive[B*8+num] = 0;
					 end
				else
				    begin
					 receive[B*8+num] = 1;
					 end
				num = num+1;
				times = 0;
				times_zero = 0;
			   end
		  if(num > 7)
			   begin
				state = IDLE;
				num = 0;
				times = 0;
				times_zero = 0;
				if(B > 27)
				    begin
				    B = 0;
					 tri_uart = 1;
					 end
				else
				    B = B+1;
				end
        end
    endcase
	 end
endmodule

FlG5JIv53fzVze18lOxxSg2CUJ1U

图3:电脑端接收温度信息

目前,项目已完成目标,可以实现时间设置、显示、温度检测及报警功能。具体请参考演示视频。

主要问题

项目实施过程中遇到的主要难题及解决过程如下:

  1. 不熟悉温度传感器、OLED等硬件的控制方法:通过查阅数据手册了解其工作原理,并参考提供的相关例程进行开发。
  2. 项目前期没有考虑资源问题,在最后阶段出现资源不足的问题:对项目逻辑进行优化,尽量减少资源的占用。

未来计划

通过调整程序,继续减少对资源的占用,使项目可以完成更多的功能。

未来新功能的设想:对蜂鸣器进行音量调节,可以通过拨码开关控制四个按键的功能在时间设置与音量调节之间切换,通过按键对音量进行调节。音量大小实时显示在OLED屏幕上(百分比形式或图形形式),对蜂鸣器音量的控制可以通过调节PWM信号占空比来实现。

附件下载
project_2021winter.rar
项目源码及可直接烧写的文件
团队介绍
哈尔滨工业大学 电信学院
团队成员
杨彧
一个卑微的技术小白。。。
评论
0 / 100
查看更多
目录
硬禾服务号
关注最新动态
0512-67862536
info@eetree.cn
江苏省苏州市苏州工业园区新平街388号腾飞创新园A2幢815室
苏州硬禾信息科技有限公司
Copyright © 2024 苏州硬禾信息科技有限公司 All Rights Reserved 苏ICP备19040198号